26379

Классификация моделей

Доклад

Информатика, кибернетика и программирование

Модель называется статической если среди параметров участвующих в ее описании нет временного параметра. Статическая модель в каждый момент времени дает лишь фотографию системы ее срез. Закон Ньютона F=am это статическая модель движущейся с ускорением a материальной точки массой m. Эта модель не учитывает изменение ускорения от одной точки к другой.

Русский

2013-08-18

73 KB

21 чел.

   Классификацию моделей проводят по различным критериям. Мы будем использовать наиболее простую и практически значимую. Модель называется статической, если среди параметров, участвующих в ее описании, нет временного параметра. Статическая модель в каждый момент времени дает лишь "фотографию" системы, ее срез.

Пример. Закон Ньютона F=am - это статическая модель движущейся с ускорением a материальной точки массой m. Эта модель не учитывает изменение ускорения от одной точки к другой. Модель динамическая, если среди ее параметров есть временной параметр, т.е. она отображает систему (процессы в системе) во времени.

Пример. Модель S=gt2/2 - динамическая модель пути при свободном падении тела. Динамическая модель типа закона Ньютона: F(t)=a(t)m(t). Еще лучшей формой динамической модели Ньютона является F(t)=s″(t)m(t). Модель дискретная, если она описывает поведение системы только в дискретные моменты времени.

Пример. Если рассматривать только t=0, 1, 2, :, 10 (сек), то модель St=gt2/2 или числовая последовательность S0=0, S1=g/2, S2=2g, S3=9g/2, :, S10=50g может служить дискретной моделью движения свободно падающего тела. Модель непрерывная, если она описывает поведение системы для всех моментов времени из некоторого промежутка времени.

Пример. Модель S=gt2/2, 0<t<100 непрерывна на промежутке времени (0;100). Модель имитационная, если она предназначена для испытания или изучения возможных путей развития и поведения объекта путем варьирования некоторых или всех параметров модели.

Пример. Пусть модель экономической системы производства товаров двух видов 1 и 2, соответственно, в количестве x1 и x2 единиц и стоимостью каждой единицы товара a1 и a2 на предприятии описана в виде соотношения: a1x1+a2x2=S, где S - общая стоимость произведенной предприятием всей продукции (вида 1 и 2). Можно ее использовать в качестве имитационной модели, по которой можно определять (варьировать) общую стоимость S в зависимости от тех или иных значений объемов производимых товаров. Модель детерминированная, если каждому входному набору параметров соответствует вполне определенный и однозначно определяемый набор выходных параметров; в противном случае - модель недетерминированная, стохастическая (вероятностная).

Пример. Приведенные выше физические модели - детерминированные. Если в модели S=gt2/2, 0<t<100 мы учли бы случайный параметр - порыв ветра с силой p при падении тела, например, так: S(p)=g(p)t2/2, 0<t<100, то мы получили бы стохастическую модель (уже не свободного!) падения. Модель функциональная, если она представима в виде системы каких- либо функциональных соотношений.

Пример. Непрерывный, детерминированный закон Ньютона и модель производства товаров (см. выше) - функциональные. Модель теоретико-множественная, если она представима с помощью некоторых множеств и отношений принадлежности им и между ними.

Пример. Пусть заданы множество X={Николай, Петр, Николаев, Петров, Елена, Екатерина, Михаил, Татьяна} и отношения: Николай - супруг Елены, Екатерина - супруга Петра, Татьяна - дочь Николая и Елены, Михаил - сын Петра и Екатерины, семьи Михаила и Петра дружат друг с другом. Тогда множество X и множество перечисленных отношений Y могут служить теоретико-множественной моделью двух дружественных семей. Модель логическая, если она представима предикатами, логическими функциями.

Пример. Совокупность двух логических функций вида: z=xyxy, p=xy может служить математической моделью одноразрядного сумматора. Модель игровая, если она описывает, реализует некоторую игровую ситуацию между участниками игры (лицами, коалициями).

Пример. Пусть игрок 1 - добросовестный налоговый инспектор, а игрок 2 - недобросовестный налогоплательщик. Идет процесс (игра) по уклонению от налогов (с одной стороны) и по выявлению сокрытия уплаты налогов (с другой стороны). Игроки выбирают натуральные числа i и j (i,jn), которые можно отождествить, соответственно, со штрафом игрока 2 за неуплату налогов при обнаружении факта неуплаты игроком 1 и с временной выгодой игрока 2 от сокрытия налогов (в средне- и долгосрочном плане штраф за сокрытие может оказаться намного более ощутимым). Рассмотрим матричную игру с матрицей выигрышей порядка n. Каждый элемент этой матрицы A определяется по правилу aij=|i-j|. Модель игры описывается этой матрицей и стратегией уклонения и поимки. Эта игра - антагонистическая, бескоалиционная (формализуемые в математической теории игр понятия мы пока будем понимать содержательно, интуитивно). Модель алгоритмическая, если она описана некоторым алгоритмом или комплексом алгоритмов, определяющим ее функционирование, развитие. Введение такого, на первый взгляд, непривычного типа моделей (действительно, кажется, что любая модель может быть представлена алгоритмом её исследования), на наш взгляд, вполне обосновано, так как не все модели могут быть исследованы или реализованы алгоритмически.

Пример. Моделью вычисления суммы бесконечного убывающего ряда чисел может служить алгоритм вычисления конечной суммы ряда до некоторой заданной степени точности. Алгоритмической моделью корня квадратного из числа x может служить алгоритм вычисления его приближенного сколь угодно точного значения по известной рекуррентной формуле. Модель структурная, если она представима структурой данных или структурами данных и отношениями между ними.

Пример. Структурной моделью может служить описание (табличное, графовое, функциональное или другое) трофической структуры экосистемы. Постройте такую модель (одна из них была приведена выше). Модель графовая, если она представима графом или графами и отношениями между ними. Модель иерархическая (древовидная), если представима некоторой иерархической структурой (деревом).

Пример. Правила дорожного движения - языковая, структурная модель движения транспорта и пешеходов на дорогах. Пусть B - множество производящих основ существительных, C - множество суффиксов, P - прилагательных, "+" - операция конкатенации слов, ":=" - операция присваивания, "=>" - операция вывода (выводимости новых слов), Z - множество значений (смысловых) прилагательных. Языковая модель M словообразования: <zi><=<pi>:=<bi>+<si>. При bi - "рыб(а)", si - "н(ый)", получаем по этой модели pi - "рыбный", zi - "приготовленный из рыбы". Модель визуальная, если она позволяет визуализировать отношения и связи моделируемой системы, особенно в динамике.

Пример. На экране компьютера часто пользуются визуальной моделью того или иного объекта, например, клавиатуры в программе-тренажере по обучению работе на клавиатуре. Модель натурная, если она есть материальная копия объекта моделирования.

Пример. Глобус - натурная географическая модель земного шара. Модель геометрическая, графическая, если она представима геометрическими образами и объектами.

Пример. Макет дома является натурной геометрической моделью строящегося дома. Вписанный в окружность многоугольник дает модель окружности. Именно она используется при изображении окружности на экране компьютера. Прямая линия является моделью числовой оси, а плоскость часто изображается как параллелограмм. Модель клеточно-автоматная, если она представляет систему с помощью клеточного автомата или системы клеточных автоматов. Клеточный автомат - дискретная динамическая система, аналог физического (непрерывного) поля. Клеточно-автоматная геометрия - аналог евклидовой геометрии. Неделимый элемент евклидовой геометрии - точка, на основе ее строятся отрезки, прямые, плоскости и т.д. Неделимый элемент клеточно-автоматного поля - клетка, на основе её строятся кластеры клеток и различные конфигурации клеточных структур. Это "мир" некоторого автомата, исполнителя, структуры. Представляется клеточный автомат равномерной сетью клеток ("ячеек") этого поля. Эволюция клеточного автомата разворачивается в дискретном пространстве - клеточном поле. Такие клеточные поля могут быть вещественно-энерго-информационными. Законы эволюции локальны, т.е. динамика системы определяется задаваемым неизменным набором законов или правил, по которым осуществляется вычисление новой клетки эволюции и его материально-энерго-информационной характеристики в зависимости от состояния окружающих ее соседей (правила соседства, как уже сказано, задаются). Смена состояний в клеточно-автоматном поле происходит одновременно и параллельно, а время идет дискретно. Несмотря на кажущуюся простоту их построения, клеточные автоматы могут демонстрировать разнообразное и сложное поведение. В последнее время они широко используются при моделировании не только физических, но и социально-экономических процессов. Клеточные автоматы (поля) могут быть одномерными, двумерными (с ячейками на плоскости), трехмерными (с ячейками в пространстве) или же многомерными (с ячейками в многомерных пространствах).

Пример. Классическая клеточно-автоматная модель - игра "Жизнь" Джона Конвея. Она описана во многих книгах. Мы рассмотрим другую клеточно-автоматную модель загрязнения среды, диффузии загрязненителя в некоторой среде. 2D-клеточный автомат (на плоскости) для моделирования загрязнения среды может быть сгенерирован следующими правилами:

  •  плоскость разбивается на одинаковые клетки: каждая клетка может находиться в одном из двух состояний: состояние 1 - в ней есть диффундирующая частица загрязнителя, и состояние 0 - если ее нет;
  •  клеточное поле разбивается на блоки 2×2 двумя способами, которые будем называть четным и нечетным разбиениями (у чётного разбиения в кластере или блоке находится четное число точек или клеток поля, у нечетного блока - их нечетное число);
  •  на очередном шаге эволюции каждый блок четного разбиения поворачивается (по задаваемому правилу распространения загрязнения или генерируемому распределению случайных чисел) на заданный угол (направление поворота выбирается генератором случайных чисел);
  •  аналогичное правило определяется и для блоков нечетного разбиения;
  •  процесс продолжается до некоторого момента или до очищения среды.

Пусть единица времени - шаг клеточного автомата, единица длины - размер его клетки. Если перебрать всевозможные сочетания поворотов блоков четного и нечетного разбиения, то видим, что за один шаг частица может переместиться вдоль каждой из координатных осей на расстояние 0, 1 или 2 (без учета направления смещения) с вероятностями, соответственно, p0=1/4, p1=1/2, p2=1/4. Вероятность попадания частицы в данную точку зависит лишь от ее положения в предыдущий момент времени, поэтому рассматриваем движение частицы вдоль оси х (y) как случайное.

Модель фрактальная, если она описывает эволюцию моделируемой системы эволюцией фрактальных объектов. Если физический объект однородный (сплошной), т.е. в нем нет полостей, можно считать, что плотность не зависит от размера. Например, при увеличении R до 2R масса увеличится в R2 раз (круг) и в R3 раз (шар), т.е. M(R)~Rn (связь массы и длины), n - размерность пространства. Объект, у которого масса и размер связаны этим соотношением, называется "компактным". Если объект (система) удовлетворяет соотношению M(R)~Rf(n), где f(n)<n, то такой объект называется фрактальным. Его плотность не будет одинаковой для всех значений R. Так как f(n)-n<0, то плотность фрактального объекта уменьшается с увеличением размера, а ρ(R) является количественной мерой разряженности, ветвистости (структурированности) объекта.

Пример. Пример фрактальной модели - множество Кантора. Рассмотрим [0;1]. Разделим его на 3 части и выбросим средний отрезок. Оставшиеся 2 промежутка опять разделим на три части и выкинем средние промежутки и т.д. Получим множество, назывемое множеством Кантора. В пределе получаем несчетное множество изолированных точек. Можно показать, что если n - размерность множества Кантора, то n=ln2/ln3≈0,63, т.е. этот объект (фрактал) еще не состоит только из изолированных точек, хотя уже и не состоит из отрезка. Фрактальные объекты самоподобны, если они выглядят одинаково в любом пространственном масштабе, масштабно инвариантны, фрагменты структуры повторяются через определенные пространственные промежутки. Поэтому они очень хорошо подходят для моделирования нерегулярностей, так как позволяют описывать (например, дискретными моделями) эволюцию таких систем для любого момента времени и в любом пространственном масштабе.

Самоподобие встречается в самых разных предметах и явлениях.

Пример. Самоподобны ветки деревьев, снежинки, экономические системы (волны Кондратьева), горные системы. Фрактальная модель применяется обычно тогда, когда реальный объект нельзя представить в виде классической модели, когда имеем дело с нелинейностью (многовариантностью путей развития и необходимостью выбора) и недетерминированностью, хаотичностью и необратимостью эволюционных процессов. Тип модели зависит от информационной сущности моделируемой системы, от связей и отношений его подсистем и элементов, а не от его физической природы.

Пример. Математические описания (модели) динамики эпидемии инфекционной болезни, радиоактивного распада, усвоения второго иностранного языка, выпуска изделий производственного предприятия и т.д. являются одинаковыми с точки зрения их описания, хотя процессы различны. Границы между моделями различного типа или же отнесение модели к тому или иному типу часто весьма условны. Можно говорить о различных режимах использования моделей - имитационном, стохастическом и т.д. Модель включает в себя: объект О, субъект (не обязательный) А, задачу Z, ресурсы B, среду моделирования С: М=<O, Z, A, B, C>. Основные свойства любой модели:

  1.  целенаправленность - модель всегда отображает некоторую систему, т.е. имеет цель;
  2.  конечность - модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
  3.  упрощенность - модель отображает только существенные стороны объекта и, кроме того, должна быть проста для исследования или воспроизведения;
  4.  приблизительность - действительность отображается моделью грубо или приблизительно;
  5.  адекватность - модель должна успешно описывать моделируемую систему;
  6.  наглядность, обозримость основных ее свойств и отношений;
  7.  доступность и технологичность для исследования или воспроизведения;
  8.  информативность - модель должна содержать достаточную информацию о системе (в рамках гипотез, принятых при построении модели) и должна давать возможность получить новую информацию;
  9.  сохранение информации, содержавшейся в оригинале (с точностью рассматриваемых при построении модели гипотез);
  10.  полнота - в модели должны быть учтены все основные связи и отношения, необходимые для обеспечения цели моделирования;
  11.  устойчивость - модель должна описывать и обеспечивать устойчивое поведение системы, если даже она вначале является неустойчивой;
  12.  целостность - модель реализует некоторую систему (т.е. целое);
  13.  замкнутость - модель учитывает и отображает замкнутую систему необходимых основных гипотез, связей и отношений;
  14.  адаптивность - модель может быть приспособлена к различным входным параметрам, воздействиям окружения;
  15.  управляемость (имитационность) - модель должна иметь хотя бы один параметр, изменениями которого можно имитировать поведение моделируемой системы в различных условиях;
  16.  эволюционируемость - возможность развития моделей (предыдущего уровня).

Жизненный цикл моделируемой системы:

  •  сбор информации об объекте, выдвижение гипотез, предмодельный анализ;
    •  проектирование структуры и состава моделей (подмоделей);
    •  построение спецификаций модели, разработка и отладка отдельных подмоделей, сборка модели в целом, идентификация (если это нужно) параметров моделей;
    •  исследование модели - выбор метода исследования и разработка алгоритма (программы) моделирования;
    •  исследование адекватности, устойчивости, чувствительности модели;
    •  оценка средств моделирования (затраченных ресурсов);
    •  интерпретация, анализ результатов моделирования и установление некоторых причинно-следственных связей в исследуемой системе;
    •  генерация отчетов и проектных (народно-хозяйственных) решений;
    •  уточнение, модификация модели, если это необходимо, и возврат к исследуемой системе с новыми знаниями, полученными с помощью модели и моделирования.

Моделирование - метод системного анализа. Но часто в системном анализе при модельном подходе исследования может совершаться одна методическая ошибка, а именно, - построение корректных и адекватных моделей (подмоделей) подсистем системы и их логически корректная увязка не дает гарантий корректности построенной таким способом модели всей системы. Модель, построенная без учета связей системы со средой и ее поведения по отношению к этой среде, может часто лишь служить еще одним подтверждением теоремы Геделя, а точнее, ее следствия, утверждающего, что в сложной изолированной системе могут существовать истины и выводы, корректные в этой системе и некорректные вне ее. Наука моделирования состоит в разделении процесса моделирования (системы, модели) на этапы (подсистемы, подмодели), детальном изучении каждого этапа, взаимоотношений, связей, отношений между ними и затем эффективного описания их с максимально возможной степенью формализации и адекватности. В случае нарушения этих правил получаем не модель системы, а модель "собственных и неполных знаний". Моделирование (в значении "метод", "модельный эксперимент") рассматривается как особая форма эксперимента, эксперимента не над самим оригиналом (это называется простым или обычным экспериментом), а над копией (заместителем) оригинала. Здесь важен изоморфизм систем (оригинальной и модельной) - изоморфизм, как самой копии, так и знаний, с помощью которых она была предложена. Модели и моделирование применяются по основным направлениям:

  1.  обучение (как моделям, моделированию, так и самих моделей);
  2.  познание и разработка теории исследуемых систем (с помощью каких-либо моделей, моделирования, результатов моделирования);
  3.  прогнозирование (выходных данных, ситуаций, состояний системы);
  4.  управление (системой в целом, отдельными подсистемами системы), выработка управленческих решений и стратегий;
  5.  автоматизация (системы или отдельных подсистем системы).

Классификация моделей

Признаки классификаций моделей:

  1) по области использования;

  2) по фактору времени;

  3) по отрасли знаний;

  4) по форме представления

1) Классификация моделей по области использования:

Учебные модели – используются при обучении;

Опытные – это уменьшенные или увеличенные копии проектируемого объекта. Используют для исследования и прогнозирования его будущих характеристик

Научно - технические -  создаются для исследования процессов и явлений

Игровые – репетиция поведения объекта в различных условиях

Имитационные – отражение реальности в той или иной степени (это метод проб и ошибок)

2) Классификация моделей по фактору времени:

Статические – модели, описывающие состояние системы в определенный момент времени (единовременный срез информации по данному объекту). Примеры моделей: классификация животных…., строение молекул, список посаженных деревьев, отчет об обследовании состояния зубов в школе и тд.

Динамические – модели, описывающие процессы изменения и развития системы (изменения объекта во времени). Примеры: описание движения тел, развития организмов, процесс химических реакций.

3) Классификация моделей по отрасли знаний - это классификация по отрасли деятельности человека: Математические, биологические, химические, социальные, экономические, исторические и тд

4) Классификация моделей по форме представления:

Материальные – это предметные (физические) модели. Они всегда имеют реальное воплощение. Отражают внешнее свойство и внутреннее устройство исходных объектов, суть процессов и явлений объекта-оригинала. Это экспериментальный метод познания окружающей среды. Примеры: детские игрушки, скелет человека, чучело, макет солнечной системы, школьные пособия, физические и химические опыты

Абстрактные (нематериальные) – не имеют реального воплощения. Их основу составляет информация. это теоретический метод познания окружающей среды. По признаку реализации они бывают:  мысленные и вербальные; информационные

Мысленные модели формируются в воображении человека в результате раздумий, умозаключений, иногда в виде некоторого образа. Это модель сопутствует сознательной деятельности человека.

Вербальные – мысленные модели выраженные в разговорной форме. Используется для передачи мыслей

Информационные модели – целенаправленно отобранная информация об объекте, которая отражает наиболее существенные для исследователя свойств этого объекта.

Типы информационных моделей :

Табличные – объекты и их свойства представлены в виде списка, а их значения размещаются в ячейках прямоугольной формы. Перечень однотипных объектов размещен в первом столбце (или строке), а значения их свойств размещаются в следующих столбцах (или строках)

Иерархические – объекты распределены по уровням. Каждый элемент высокого уровня состоит из элементов нижнего уровня, а элемент нижнего уровня может входить в состав только одного элемента более высокого уровня

Сетевые – применяют для отражения систем, в которых связи между элементами имеют сложную структуру

По степени формализации информационные модели бывают образно-знаковые и знаковые. Например:

Образно-знаковые модели :

Геометрические (рисунок, пиктограмма, чертеж, карта, план, объемное изображение)

Структурные (таблица, граф, схема, диаграмма)

Словесные (описание естественными языками)

Алгоритмические (нумерованный список, пошаговое перечисление, блок-схема)

Знаковые модели:

Математические – представлены матем.формулами, отображающими связь параметров

Специальные – представлены на спец. языках (ноты, хим.формулы)

Алгоритмические – программы


 

А также другие работы, которые могут Вас заинтересовать

39859. Система автоматизации насосной установки станции подкачки воды жилищного комплекса 2.99 MB
  Задача данной системы управления – поддержание постоянного заданного напора в водопроводной магистрали жилищного комплекса обеспечение отработки суточной диаграммы напоров обеспечение энергосберегающего управления напором обеспечение защиты от превышения и занижения давления в водопроводной сети. ЭЛЕКТРОПРИВОД насосная установка АСИНХРОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ ЧАСТОТНОЕ РЕГУЛИРОВАНИЕ закон управления регулятор давления МОДЕЛИРОВАНИЕ ПИД РЕГУЛЯТОР ПЕРЕХОДНЫЕ ПРОЦЕССЫ MATLAB SIMULINK. Выбор датчика давления 52 4.59 Синтез контура...
39861. Модернизация конструкции передвижного стола пресса ковочного гидравлического пресса усилием 150 МН 3.45 MB
  В контексте всего вышесказанного в данном дипломном проекте рассмотрены вопросы производительности гидравлического пресса и на основании исследований были произведены изменения в цилиндре стола с целью увеличения производительности также проведены мероприятия по охране труда и гражданской обороне. В качестве аккумуляторов в кривошипных и винтовых прессах применяют маховики в гидропрессахгидроаккумуляторы и в гидровинтовых прессах маховики и гидроаккумуляторы. Однако особый интерес представляют пресса большой мощности к ним относятся...
39862. Экономическое обоснование создания нового предприятия (на примере ООО «Blue bird») 847.5 KB
  В дипломном проекте дана характеристика разрабатываемой станции технического обслуживания, проанализирован рынок сбыта и конкуренция. Также было подсчитано количество необходимого рабочего персонала для оптимальной работы предприятия, разработан план маркетинга и план производства.
39863. УСТРОЙСТВА ОПТОЭЛЕКТРОНИКИ 469.5 KB
  Созданы волоконные световоды с малыми потерями: затухание сигнала = 1 дБ км в ближней ИК области спектра. Наиболее широкополосны одномодовые световоды в области длин волн 126 132 мкм где материальная дисперсия кварцевых стёкол ближе к 0; полоса пропускания составляет 1011 Гцкм. Важными свойствами такого перехода является наличие обедненной носителями области перехода концентрирующей относительно сильное поле и области поглощения где поглощается падающий свет захватываются фотоны. Структура рn перехода: 1 обедненная область; 2 ...
39864. Обществознание. Учебник для 11 класа 2.83 MB
  азделение общества на группы называют социальной дифференциацией. Слово «дифференциация» происходит от латинского корня, означающего «различие». Многие исследователи считают, что дифференциация свойственна любому обществу. Даже в первобытных племенах выделялись группы в соответствии с полом и возрастом, с присущими им привилегиями и обязанностями.
39865. АВТОМОБИЛЬНЫЙ РЕЧЕВОЙ ИНФОРМАТОР 675 KB
  Курсовой проект выполнен на листах содержит чертежей.5 В каждый тарный ящик должен быть вложен упаковочный лист составленный по форме принятой предприятием изготовителем и согласованной с представителем заказчика. Упаковочный лист и сопроводительная документация должны находиться в пакете из полиэтиленовой плёнки ГОСТ 1035482. Сам корпус изготовляется из листового алюминиевого сплава толщиной 1 мм.
39866. Автомобильный речевой информатор 320.5 KB
  Были произведены необходимые инженерные расчеты. РАСЧЕТНОТЕОРЕТИЧЕСКАЯ ЧАСТЬ Анализ технического задания описания работы информатора речевого автомобильного 1. Проверочный схемотехнический расчет 1. Компоновочный расчет 1.
39867. Разработка стенда для снятия фазо-токовых характеристик ферритовых фазовращателей 1.11 MB
  Нормы времени на разработку определяем из Нормативы времени на разработку КД в НИИ и КБ по всем направлениям техники на ОАО ММЗ; п – количество листов документации ед; К комплексный коэффициент учитывающий различные условия организации труда и вид разрабатываемой аппаратуры. К1 = 10 – тип производства – единичное; К2 = 10 – условия применения РЭС – стационарная; К3 = 14 – количество чертежей; К4 = 06 – одновариантная разработка чертежа; К5 = 12 – перевод на иностранный язык; К6 = 085 – метод размножения документов; К7 = 09 –...