26380

Модели предметные (материальные) и модели информационные

Доклад

Информатика, кибернетика и программирование

Предметные модели воспроизводят геометрические физические и другие свойства объектов в материальной форме глобус анатомические муляжи модели кристаллических решеток макеты зданий и сооружений и др. Информационные модели представляют объекты и процессы в образной или знаковой форме. Образные модели рисунки фотографии и др.

Русский

2013-08-18

33.5 KB

4 чел.

Все модели можно разбить на два больших класса: модели предметные (материальные) и модели информационные. Предметные модели воспроизводят геометрические, физические и другие свойства объектов в материальной форме (глобус, анатомические муляжи, модели кристаллических решеток, макеты зданий и сооружений и др.).

      Информационные модели представляют объекты и процессы в образной или знаковой форме.

Образные модели (рисунки, фотографии и др.) представляют собой зрительные образы объектов, зафиксированные на каком-либо носителе информации (бумаге, фото- и кинопленке и др.). Широко используются образные информационные модели в образовании (вспомните учебные плакаты по различным предметам) и науке, где требуется классификация объектов по их внешним признакам (в ботанике, биологии, палеонтологии и др.).

    Знаковые информационные модели строятся с использованием различных языков (знаковых систем). Знаковая информационная модель может быть представлена в форме текста (например, программы на языке программирования), формулы (например, второго закона Ньютона F=m·a), таблицы (например, периодической таблицы элементов Д. И. Менделеева) и так далее.

     Иногда при построении знаковых информационных моделей используются одновременно несколько различных языков. Примерами таких моделей могут служить географические карты, графики, диаграммы и пр. Во всех этих моделях используются одновременно как язык графических элементов, так и на протяжении своей истории человечество использовало различные способы и инструменты для создания информационных моделей. Эти способы постоянно совершенствовались. Так, первые информационные модели создавались в форме наскальных рисунков, в настоящее же время информационные модели обычно строятся и исследуются с использованием современных компьютерных технологий.

Формализация. Естественные языки используются для создания описательных информационных моделей. В истории науки известны многочисленные описательные информационные модели; например, гелиоцентрическая модель мира, которую предложил Коперник, формулировалась следующим образом:

Земля вращается вокруг своей оси и вокруг Солнца;

орбиты всех планет проходят вокруг Солнца.

    С помощью формальных языков строятся формальные информационные модели (математические, логические и др.). Одним из наиболее широко используемых формальных языков является математика. Модели, построенные с использованием математических понятий и формул, называются математическими моделями. Язык математики является совокупностью формальных языков. С некоторыми из них (алгебра, геометрия, тригонометрия) вы знакомитесь в школе, с другими (теория множеств, теория вероятностей и др.) сможете ознакомиться в процессе дальнейшего обучения.

    Язык алгебры позволяет формализовать функциональные зависимости между величинами. Так, Ньютон формализовал гелиоцентрическую систему мира, открыв законы механики и закон всемирного тяготения и записав их в виде алгебраических функциональных зависимостей. В школьном курсе физики рассматривается много разнообразных функциональных зависимостей, выраженных на языке алгебры, которые представляют собой математические модели изучаемых явлений или процессов.

      Язык алгебры логики (алгебры высказываний) позволяет строить формальные логические модели. С помощью алгебры высказываний можно формализовать (записать в виде логических выражений) простые и сложные высказывания, выраженные на естественном языке. Построение логических моделей позволяет решать логические задачи, строить логические модели устройств компьютера (сумматора, триггера) и так далее символьный язык.

Процесс построения информационных моделей с помощью формальных языков называется формализацией.

     

        В процессе познания окружающего мира человечество постоянно использует моделирование и формализацию. При изучении нового объекта сначала обычно строится его описательная информационная модель на естественном языке, затем она формализуется, то есть выражается с использованием формальных языков (математики, логики и др.).

        Визуализация формальных моделей. В процессе исследования формальных моделей часто производится их визуализация. Для визуализации алгоритмов используются блок-схемы: пространственных соотношений между объектами — чертежи, моделей электрических цепей — электрические схемы, логических моделей устройств — логические схемы и так далее.

         Так при визуализации формальных физических моделей с помощью анимации может отображаться динамика процесса, производиться построение графиков изменения физических величин и так далее. Визуальные модели обычно являются интерактивными, то есть исследователь может менять начальные условия и параметры протекания процессов и наблюдать изменения в поведении модели.
 

        В качестве примера можно рассмотреть модель, которая демонстрирует свободные колебания математического маятника. С помощью анимации показываются движение тела и действующие силы, строятся графики зависимости от времени угловой координаты или скорости, диаграммы потенциальной и кинетической энергий. Исследователь может изменять длину нити l, угол начального отклонения маятника φо трения b.


 

А также другие работы, которые могут Вас заинтересовать

18281. ЛОГІКА ВИСЛОВЛЕНЬ 143.5 KB
  Лекція 8 ЛОГІКА ВИСЛОВЛЕНЬ Поняття про твердження. Математичні твердження та їх види. Висловлювання логічне значення висловлення. Логічні сталі. Прості і складні висловлення. Пропозиційні змінні. Операції заперечення конюнкції дизюнкції та еквіва
18282. ЛОГІКА ПРЕДИКАТІВ 172.5 KB
  Лекція 9 ЛОГІКА ПРЕДИКАТІВ Поняття про зміну в математиці. Предикат висловлювальна форма та його основні характеристики. Тотожно істинні тотожно хибні і рівносильні предикати. Операції логіки висловлень над предикатами. Області істинності результат
18283. МІРКУВАННЯ ТА ПЕРЕВІРКА ЇХ ПРАВИЛЬНОСТІ 87.5 KB
  Лекція 10 МІРКУВАННЯ ТА ПЕРЕВІРКА ЇХ ПРАВИЛЬНОСТІ Поняття про міркування. Правильні і неправильні міркування. Перевірка правильності міркувань за допомогою кругів Ейлера або наведення контрприкладу. Теореми і їх будова. Твердження що повязані з даною те
18284. РІЗНІ ПІДХОДИ ДО ПОБУДОВИ МНОЖИНИ ЦІЛИХ НЕВІД’ЄМНИХ ЧИСЕЛ 70 KB
  Лекція 11 РІЗНІ ПІДХОДИ ДО ПОБУДОВИ МНОЖИНИ ЦІЛИХ НЕВІДЄМНИХ ЧИСЕЛ Короткі історичні відомості про виникнення натурального числа і нуля. Різні підходи до побудови множини цілих невідємних чисел. Скінченні множини та їх властивості: а Теоретикомн
18285. МНОЖИНА ЦІЛИХ НЕВІД’ЄМНИХ ЧИСЕЛ 53.5 KB
  Лекція 12 МНОЖИНА ЦІЛИХ НЕВІДЄМНИХ ЧИСЕЛ Натуральне число як спільна властивість класу скінченних непорожніх рівнопотужних множин. Поняття про нуль. Множина цілих невідємних чисел. Відношення рівності€ на множині цілих невідємних чисел та його властив
18286. ДОДАВАННЯ І ВІДНІМАННЯ ЦІЛИХ НЕВІД’ЄМНИХ ЧИСЕЛ 74 KB
  Лекція 13 ДОДАВАННЯ І ВІДНІМАННЯ ЦІЛИХ НЕВІДЄМНИХ ЧИСЕЛ Означення суми цілих невідємних чисел через обєднання множин. Існування і єдність суми. Операція додавання цілих невідємних чисел та їх властивості. Формування понять суми і додавання в початкові...
18287. МНОЖЕННЯ І ДІЛЕННЯ ЦІЛИХ НЕВІД’ЄМНИХ ЧИСЕЛ 85 KB
  Лекція 14 МНОЖЕННЯ І ДІЛЕННЯ ЦІЛИХ НЕВІДЄМНИХ ЧИСЕЛ Означення добутку цілих невідємних чисел через декартів добуток множин. Існування і єдність добутку. Означення добутку цілих невідємних чисел через суму. Операція множення цілих невідємних чисел та...
18288. АКСІОМИ ПЕАНО 93 KB
  Лекція 15 АКСІОМИ ПЕАНО Поняття про аксіоматичний метод побудови теорії. Аксіоматична побудова множини цілих невідємних чисел; неозначувані поняття аксіоми Пеано та деякі наслідки з них. Аксіоматичне означення операції додавання цілих невідємних чисел...
18289. ВЛАСТИВОСТІ МНОЖИНИ ЦІЛИХ НЕВІД’ЄМНИХ ЧИСЕЛ 124 KB
  Лекція 16 ВЛАСТИВОСТІ МНОЖИНИ ЦІЛИХ НЕВІДЄМНИХ ЧИСЕЛ Ділення з остачею. Теорема про ділення з остачею. Операції ділення з остачею. Формування поняття ділення з остачею в початковій школі. Принцип і метод математичної індукції. б Натуральне число як р...