26444

Половые органы самок

Доклад

Биология и генетика

Кровоснабжение осуществляют внутренние подвздошные артерии и вены, которые имеют париетальные и висцеральные ветви. Симпатическая иннервация сосудов осуществляется из боковых рогов...

Русский

2013-08-22

21.5 KB

2 чел.

Половые органы самок

Состоят из парных половых желёз, половых протоков и наружных половых органов. Анатомический состав:

  1.  яичник (ovarium): корковая зона – фолликулярная, мозговая - сосудистая
  2.  яйцевод (tuba uterina, ductus oveductus, salpinx): воронка – ампула (+ отверстие с перитониальной полостью) – перешеек (istmus) – расширяется – отверстие в рог матки
  3.  матка (uterus, metra, hystera): рога – тело - шейка
  4.  влагалище (vagina)
  5.  мочеполовое преддверие (vestibulum urogenitalae): у КРС здесь дивертикул
  6.  наружные половые органы (vulva): половая щель, половые губы, клитор.

Кровоснабжение осуществляют внутренние подвздошные артерии и вены, которые имеют париетальные и висцеральные ветви. Симпатическая иннервация сосудов осуществляется из боковых рогов грудо-поясничного отдела спинного мозга по подчревному нерву и нервам межузлового сплетения через каудальный брыжеечный ганглий. Постганглионарные волокна образуют подчревное сплетение. Парасимпатическая иннервация гладкой происходит из крестцового отдела спинного мозга по 1-2 тазовым нервам через экстра- и интрамуральные ганглии. Отток лимфы в подчревные и подвздошные лимфоузлы, лежащие на кровеносных сосудах. У птиц: функционирует только левый яйцевод: воронка -> перешеек -> белковая часть -> птичья матка (скорлупа) -> влагалище -> клоака.


 

А также другие работы, которые могут Вас заинтересовать

32767. Политропический процесс. Теплоёмкость газа в политропическом процессе 28.5 KB
  Политропический процесс. Теплоёмкость газа в политропическом процессе. Рассмотренные выше изохорический изобарический изотермический и адиабатический процессы обладают одним общим свойством имеют постоянную теплоемкость. Термодинамические процессы при которых теплоемкость остается постоянной называются политропными.
32768. Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям 26.5 KB
  Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям. Закон распределения молекул идеального газа по скоростям закон Максвелла определяет вероятное количество dN молекул из полного их числа N число Авогадро в данной массе газа которые имеют при данной температуре Т скорости заключенные в интервале от V до V dV: dN N=FVdV FV функция распределения вероятности молекул газа по скоростям определяется по формуле; FV=4πM 2πRT3 2 V2 expMV2 2RT где V модуль скорости молекул м с; абсолютная...
32769. Барометрическая формула. Закон Больцмана для распределения частиц во внешнем потенциальном поле 56.5 KB
  Барометрическая формула зависимость давления или плотности газа от высоты в поле тяжести. Для идеального газа имеющего постоянную температуру T и находящегося в однородном поле тяжести во всех точках его объёма ускорение свободного падения g одинаково барометрическая формула имеет следующий вид: где p давление газа в слое расположенном на высоте h p0 давление на нулевом уровне h = h0 M молярная масса газа R газовая постоянная T абсолютная температура. Из барометрической формулы следует что концентрация молекул n или...
32770. Среднее число столкновений и средняя длина свободного пробега молекул. Их связь с концентрацией и размером молекул 56.5 KB
  Среднее число столкновений и средняя длина свободного пробега молекул. Их связь с концентрацией и размером молекул. Средние скорости молекул газа очень велики порядка сотен метров в секунду при обычных условиях. Однако процесс выравнивая неоднородности в газе вследствие молекулярного движения протекает весьма медленно.
32771. Понятие о разрежённых газах. Вакуум и методы его получения 41 KB
  Вакуум и методы его получения. Такое состояние газа называется вакуумом. Разреженный газ Вакуум среда содержащая газ при давлениях значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером процесса d.
32772. Обратимые и необратимые процессы. Круговой процесс (цикл). Тепловые двигатели и холодильные машины. Термический КПД 52.5 KB
  производит положительную работу за счёт своей внутренней энергии и количеств теплоты Qn полученных от внешних источников а на др. системой или над системой работа А равна алгебраической сумме количеств теплоты Q полученных или отданных на каждом участке К. Отношение А Qn совершённой системой работы к количеству полученной ею теплоты называется коэффициентом полезного действия кпд К. называется прямым если его результатом является совершение работы над внешними телами и переход определённого количества теплоты от более нагретого...
32773. Цикл Карно и его КПД для идеального газа. Второе начало термодинамики. Независимость КПД цикла Карно от рабочего вещества. Лемма Карно 47 KB
  Второе начало термодинамики. Следовательно согласно I началу термодинамики работа совершаемая двигателем равна =Q1Q2 Коэффициентом полезного действия КПД теплового двигателя называется отношение работы совершаемой двигателем к количеству теплоты полученному от нагревателя η=Q1Q2 Q1 КПД тепловой машины всегда меньше единицы η=1Q2 Q1 Следовательно невозможно всю теплоту превратить в работу. Отсюда Q2 T2≥Q1 T1 На основании этого неравенства можно прийти к понятию энтропия и второму началу термодинамики. Второе начало термодинамики ...
32774. Энтропия идеального газа при обратимых и необратимых процессах 33.5 KB
  К определению энтропии S можно прийти на основе анализа работы тепловых машин. ∆S=∆Q T Для тепловой машины изменение энтропии нагревателя и холодильника равны: ∆S1=Q1 T1 и ∆S2=Q2 T2 Формула ∆S=∆Q T справедлива для изотермического процесса и представляет собой термодинамическое определение энтропии. Для любого процесса можно найти бесконечно малое изменение энтропии т. ее дифференциал dS=δQ T где δQ элементарная теплота В интегральной форме для любого процесса изменение энтропии равно Найдем изменение энтропии за один цикл для тепловой...
32775. Статистическое толкование энтропии 31 KB
  Рассматривая Вселенную как изолированную систему и распространяя на неё второй закон термодинамики Р. Из сказанного в предыдущем разделе следует что к Вселенной в целом как изолированной системе F = 0 второе начало термодинамики неприменимо по определению. При этом второй закон термодинамики формулируется следующим образом: природа стремится от состояния менее вероятного к состоянию более вероятному. Таким образом являясь статистическим законом второй закон классической термодинамики выражает закономерности хаотического движения большого...