26727

Природные, исторические, национальные, социально-демографические, экономические особенности муниципальных образований

Доклад

Политология и государственное регулирование

Экономическую основу местного самоуправления составляют находящееся в муниципальной собственности имущество средства местных бюджетов а также имущественные права муниципальных образований. Органы местного самоуправления от имени муниципального образования самостоятельно владеют пользуются и распоряжаются муниципальным имуществом. В соответствии с Гражданским кодексом органы местного самоуправления вправе создавать муниципальные предприятия и учреждения. К собственным доходам местного бюджета могут относиться: средства самообложения граждан...

Русский

2013-08-18

27 KB

71 чел.

Природные, исторические, национальные, социально-демографические, экономические особенности муниципальных образований.

Экономическую основу местного самоуправления составляют находящееся в муниципальной собственности имущество, средства местных бюджетов, а также имущественные права муниципальных образований. Органы местного самоуправления от имени муниципального образования самостоятельно владеют, пользуются и распоряжаются муниципальным имуществом. В соответствии с Гражданским кодексом органы местного самоуправления вправе создавать муниципальные предприятия и учреждения.

Каждое муниципальное образование имеет собственный бюджет (местный бюджет). К собственным доходам местного бюджета могут относиться:

  •  средства самообложения граждан
  •  доходы от местных налогов и сборов
  •  доходы от региональных налогов и сборов
  •  доходы от федеральных налогов и сборов
  •  безвозмездные перечисления из бюджетов других уровней, включая дотации на выравнивание бюджетной обеспеченности муниципальных образований
  •  доходы от имущества, находящегося в муниципальной собственности
  •  часть прибыли муниципальных предприятий, остающейся после уплаты налогов и сборов и осуществления иных обязательных платежей
  •  штрафы, установление которых отнесено к компетенции органов местного самоуправления
  •  добровольные пожертвования
  •  субвенции на решение вопросов местного значения межмуниципального характера (для некоторых муниципальных районов)
  •  иные законные поступления.

Закон устанавливает возможность выравнивания уровня бюджетной обеспеченности поселений, муниципальных районов и городских округов путем предоставления дотаций из регионального фонда финансовой поддержки муниципальных образований и (или) районных фондов финансовой поддержки поселений.

Органы местного самоуправления и уполномоченные ими муниципальные учреждения могут выступать заказчиками на поставки товаров, выполнение работ и оказание услуг, связанных с решением вопросов местного значения и осуществлением отдельных государственных полномочий (муниципальный заказ). Муниципальные образования вправе привлекать заемные средства, в том числе за счет выпуска муниципальных ценных бумаг (муниципальный заем).


 

А также другие работы, которые могут Вас заинтересовать

22339. Массивы переменные как однородные статические структуры данных. Строки символов. Инициализация переменных и массивов. Управляющие конструкции языка Си: синтаксис и семантика 47 KB
  Так например для представления строки содержащей 40 символов в программе необходимо иметь описание вида char string[41]; т. Имя функции и назначение: strcat добавление строки string2 в конец строки string1 Формат и описание аргументов: char strcatstring1 string2 char string1; Указатель на строкуприемник char string2; Указатель на строкуисточник Возвращаемое значение равно адресу начала стороки string1 т. Имя функции и назначение: strchr поиск первого вхождения символа sym в строку string...
22340. Преобразователи частоты (ПЧ) 264 KB
  Преобразователи частоты ПЧ Преобразователи частоты предназначены для переноса спектра радиосигнала из одной области радиочастотного диапазона в другую. Рисунок Перенос спектра сигнала преобразователем частоты Обобщенная структурная схема ПЧ приведена на рисунке 2. ПЧ состоит из нелинейного элемента НЭ смесителя фильтра промежуточной частоты ФПЧ и гетеродина Г. Рисунок 2 Структурная схема преобразователя частоты Смеситель можно представить шестиполюсником на который подаются напряжения преобразуемого сигнала uC и гетеродина...
22341. Детекторы радиосигналов 676.5 KB
  Амплитудные детекторы Амплитудный детектор устройство на выходе которого создается напряжение в соответствии с законом модуляции амплитуды входного гармонического сигнала. Если на входе АД действует напряжение ивх модулированное по амплитуде колебанием с частотой F то график изменения этого напряжения во времени и его спектр имеют вид показанный на рисунке 2а. Напряжение на выходе детектора ЕД рисунок 2б должно меняться в соответствии с законом изменения огибающей Uвх входного напряжения ивх. Таким образом напряжение на выходе АД...
22342. Прием цифровых сигналов при наличии шумов 191 KB
  Модуляция несущей происходит в передатчике и параметры модулированного сигнала полностью определяются выбранным методом модуляции и возможностями элементной базы. Ситуация усложняется еще тем что все параметры среды распространения сигнала определяются только статистически и в значительной степени приближенно. Функциональные схемы приемника цифровых сигналов Для высокочастотного сигнала типовой приемник имеет функциональную схему супергетеродина т.
22343. Синхронизация гетеродина приемника с несущей частотой 112.5 KB
  Вовторых применение оптимального фильтра максимизирующего отношение сигнал шум принятого сигнала также требует снятие отсчетов в строго определенные моменты времени. Эта необходимость возникает в том случае когда в приемнике используется когерентное детектирование ВЧ сигнала. Следовательно несущая и тактовая частоты должны быть восстановлены непосредственно в приемнике из принятого сигнала или получены от того же самого передатчика в виде опорного пилотсигнала. Параметры принятого сигнала Передаваемый и принимаемый сигналы...
22344. КРАТКАЯ ИСТОРИЯ ВОЗНИКНОВЕНИЯ РАДИО. ОСНОВНЫЕ ПРЕОБРАЗОВАНИЯ СИГНАЛА В РАДИОПРИЕМНОМ ТРАКТЕ 71.5 KB
  ОСНОВНЫЕ ПРЕОБРАЗОВАНИЯ СИГНАЛА В РАДИОПРИЕМНОМ ТРАКТЕ Краткая история возникновения радио Свою историю радио начинает с экспериментов Герца по проверке уравнений Максвелла. Поэтому в радиоприемном тракте необходимо решать задачи: выделения полезного сигнала из смеси его с помехами; выделения модулирующей функции; выделения передаваемой информации из модулирующей функции и ее преобразование к удобному для дальнейшего использования виду. Решение перечисленных задач в радиоприемном тракте осуществляется с помощью следующих функций:...
22345. Основные архитектуры РПТ. Шумовые характеристики, динамический диапазон 431.5 KB
  Как и в квадратурном смесителе здесь используется пара идентичных смесителей на которые помимо РЧ сигнала подается сигнал с гетеродина в квадратуре. Сигналы в I и Q каналах содержат полную информацию об огибающей входного сигнала и могут быть обработаны в соответствующим образом построенном демодуляторе. В приемнике прямого преобразования наличие рассогласования в цепях смесителя и ФНЧ не ведет к ухудшению селективности а лишь к некоторому искажению полезного сигнала что зачастую не имеет никакого значения при приеме цифровых данных....
22346. Входные каскады РПТ. Высокочастотные фильтры, УРЧ 247.5 KB
  С точки зрения минимизации вносимых приемником шумов следовало бы в качестве первого каскада использовать малошумящий усилитель МШУ имеющий максимальный коэффициент усиления и минимальный коэффициент шума. Современные МШУ имеют коэффициент шума до 0. В диапазоне частот 450 мГц МШУ имеет коэффициент шума 2. Суммарный коэффициент шума в последовательном включении МШУ фильтр рассчитывается по 1.
22347. Непрерывность функций комплексной переменной 468 KB
  Если то функция называется непрерывной в точке . Иными словами: непрерывна в точке если для любого сколь угодно малого существует положительное число такое что 2 для всех удовлетворяющих неравенству 3 короче . Геометрически это означает что для всех точек лежащих внутри круга с центром в точке достаточно малого радиуса соответствующие значения функции изображаются точками лежащими внутри круга с центром в точке сколь...