2674

Расчёт режимов короткого замыкания в электроэнергетической системе

Курсовая

Энергетика

Расчет режимов короткого замыкания (КЗ) в электроэнергетической системе (ЭЭС) требуется производить как при эксплуатации, так и при развитии энергосистемы, в частности, при вводе новых объектов: электрических станций и подстанций. При этом для прове...

Русский

2012-11-12

342.01 KB

60 чел.

Расчет режимов короткого замыкания (КЗ) в электроэнергетической системе (ЭЭС) требуется производить как при эксплуатации, так и при развитии энергосистемы, в частности, при вводе новых объектов: электрических станций и подстанций. При этом для проверки электрооборудования, настройки устройств защиты и других целей рассматриваются различные виды КЗ в различных расчетных точках. В данной курсовой работе задания по расчету режимов КЗ также связываются с вводом того или иного объекта, задаваемого условно по вариантам в реальных, но достаточно упрощенных схемах действующих энергосистем: Ивановской, Ярославской, Воркутинской. Расчетная точка КЗ при этом задается на вновь вводимом объекте (например, для проверки его оборудования). Такая постановка учебной задачи приближает ее к практике, дает возможность познакомиться со схемами реальных систем и уровнями их токов КЗ. Решение поставленной задачи возможно различными путями. Один из них предполагает наличие или составление полной расчетной схемы ЭЭС, насчитывающей, возможно, сотни узлов, с дальнейшим применением ЭВМ и специализированных программ автоматизированного расчета КЗ. Очевидно, что для учебных целей этот путь неприемлем. Другой способ состоит в эквивалентировании, т.е. упрощении столь обширных схем до обозримых размеров. При этом если известен ток КЗ на шинах примыкания ЭЭС, то можно заменить всю сложную схему ЭЭС одним эквивалентным источником. Возможны случаи с несколькими шинами примыкания, по каждым из которых эквивалентируемая часть системы заменяется соответствующим источником. При этом не будут учтены возможные связи между шинами примыкания через отбрасываемую часть схемы. Однако погрешность получается вполне приемлемой, если упомянутые связи слабы (по сравнению со связями между шинами примыкания, учитываемыми в явном виде).

В курсовой работе проводится эквивалентирование схемы ЭЭС указанным способом с последующим расчетом режимов КЗ. Возможные формы и методы применения ЭВМ на отдельных этапах выполнения работы согласуются с преподавателем.

В качестве вновь вводимого объекта в заданную схему ЭЭС с соответствующей схемой подключения (табл. 1) рассматривается электростанция, работающая с местной двигательной нагрузкой на шинах генераторного напряжения.

1. ИСХОДНЫЕ ДАННЫЕ.

Данные для построения расчетной схемы Ивановской ЭЭС.

Шины эквивален-тирования

Схема подключения вводимого объекта

Элементы, учитываемые в явном виде

Режим работы нейтралей трансформаторов

Участок ВЛ со взаимной индукцией

Замкн. на землю фазы при КЗ в т. К2

Ив-220

ВЛ: Ив-220—Ив-4  

ПС: Ив-4

НА ПС Ив-4 нейтраль одного из тр-ров заземлена. Тр-р на ПС Ив-4 с изолированной нейтралью  подключён к ВЛ, на которой рассчитывается КЗ

Ив-220—вводимый обьект

В

Данные для построения расчётной схемы вводимой электростанции.

Вариант

N 21

Параметры синхронного генератора

Параметры реактора (секционного)

SНОМ, МВА

Хd”, о.е.

X2, о.е.

Та, С

Режим

IНОМ, кА

Xр, Ом

PН, (на фазу) кВт

P0, МВт

Q0, Мвар

U0, кВ

31,25

0,144

0,176

0,073

2

1,5

9,75

0,4

0,35

1,6

Параметры трансформаторов

Кол-во двигателей

Параметры асинхронного двигателя

SНОМ, МВА

Uср нн ном, кВ

N, шт

SНОМ, МВА

Tр, с

Та, с

Режим

P0, МВт

Q0, Мвар

2,5

10,5

1

0,46

4,7

0,09

0,02

0,28

0,24

         

     Рис. 1. Исходная схема.

2. РАСЧЁТ НАЧАЛЬНОЙ ФАЗЫ ПЕРЕХОДНОГО ПРОЦЕССА ПРИ ТРЁХФАЗНОМ КЗ НА ШИНАХ НИЗШЕГО НАПРЯЖЕНИЯ ЭЛЕКТРОСТАНЦИИ.

2.1. Схема замещения электроэнергетической системы с учётом эквивалентирования заданных участков системы и её параметры.

2.1.1. Параметры схемы замещения в относительных единицах.

Примем Uб=10,5 кВ, МВт, ЕС*(б) =1 о.е.

Параметры схемы замещения системы.

 о.е.

Параметры схемы замещения генераторов на ЭС.

о.е.  

о.е.

о.е.     о.е.

о.е.

Параметры схемы замещения двигателей на ЭС.

о.е.  

о.е.

о.е.     о.е.

о.е.

Параметры схемы замещения трансформаторов на ЭС.

о.е.

Параметры схемы замещения реактора на ЭС.

о.е.

Параметры схемы замещения трансформаторов в системе.

Uкв%=0,5*(Uкв-н%+ Uкв-с%- Uкс-н%)=0,5*(17+10,5-6)=10,75%

Uкc%=0,5*(Uкв-c%+ Uкc-н%- Uкв-н%)=0,5*(10,5+6-17)= 0%

Uкн%=0,5*(Uкв-н%+ Uкс-н%- Uкв-с%)=0,5*(17+6-10,5)=6,25%

о.е.

о.е.

о.е.

Параметры схемы замещения нагрузки в системе.

о.е.   о.е. о.е.

о.е.

о.е.

о.е.

Параметры схемы замещения линий в системе.

о.е.

2.1.2. Схема замещения.

Рис.2. Схема замещения электроэнергетической системы с учётом эквивалентирования заданных участков системы (в относительных единицах).

2.1.3. Параметры схемы замещения в именованных единицах.

Параметры схемы замещения системы.

кВ.

Ом.

Параметры схемы замещения генераторов на ЭС.

кВ.

Ом.

Параметры схемы замещения двигателей на ЭС.

кВ.

Ом.

Параметры схемы замещения трансформаторов на ЭС.

Ом.

Параметры схемы замещения реактора на ЭС.

Ом.

Параметры схемы замещения трансформаторов в системе.

Ом.

Ом.

Ом.

Параметры схемы замещения нагрузки в системе.

кВ.

Ом

Ом

Ом

Параметры схемы замещения линий в системе.

Ом

Рис.3 Схема замещения электроэнергетической системы с учётом эквивалентирования заданных участков системы (в именованных единицах).

2.2. Приведение схемы к простейшему виду методом преобразования (рисунки в о.е.).

1.

В относительных единицах:

о.е.

о.е.

о.е.

В именованных единицах:

Ом

Ом

Ом

2.

В относительных единицах:

о.е.

о.е.

о.е.

В именованных единицах:

кВ

Ом

Ом

3.

В относительных единицах:

о.е.

о.е.

о.е.

о.е.

о.е.

В именованных единицах:

Ом     

кВ

Ом

кВ.

Ом.

4.

В относительных единицах:

о.е.

о.е.

о.е.

о.е.

о.е.

В именованных единицах:

кВ

Ом

Ом

Ом

Ом

5.

В относительных единицах:

о.е.

о.е.

В именованных единицах:

кВ.

Ом.

6.

В относительных единицах:

о.е.

о.е.

В именованных единицах:

кВ

Ом

2.3. Расчёт начального действующего значения периодической составляющей тока трёхфазного КЗ в месте повреждения.

В относительных единицах:

о.е.

В именованных единицах:

кА

Проверка:

кА

кА

2.4. Определение значений токов КЗ в ветвях источников.

кА.

кА.

кВ

кА

кА.

кВ

кА

кА

кА

кА

кА

кВ

кА

кА

2.5. Проверка баланса токов КЗ.

кА.

2.6. Токи КЗ приведённые к своим ступеням трансформации.

; кА.

; кА.

; кА.

; кА.

кА; кА; кА

3. РАСЧЁТ НАЧАЛЬНОЙ СТАДИИ ПЕРЕХОДНОГО ПРОЦЕССА ПРИ НЕСИММЕТРИЧНОМ КЗ НА ШИНАХ ВЫСШЕГО НАПРЯЖЕНИЯ ЭЛЕКТРОСТАНЦИИ (К2).

3.1. Схемы замещения.

3.1.1. Схема замещения прямой последовательности с учётом эквивалентирования заданных участков системы (в именованных единицах).

Примем Uб=115 кВ

Параметры схемы замещения системы.

кВ.

Ом.

Параметры схемы замещения генераторов на ЭС.

кВ.

Ом.

Параметры схемы замещения двигателей на ЭС.

кВ.

Ом.

Параметры схемы замещения трансформаторов на ЭС.

Ом.

Параметры схемы замещения реактора на ЭС.

Ом.

Параметры схемы замещения трансформаторов в системе.

Ом.

Ом.

Ом.

Параметры схемы замещения нагрузки в системе.

кВ.

Ом

Ом

Ом

Параметры схемы замещения линий в системе.

Ом

Рис.4 Схема замещения прямой последовательности электроэнергетической системы с учётом эквивалентирования заданных участков системы.

3.1.2. Схема замещения обратной последовательности с учётом эквивалентирования заданных участков системы (в именованных единицах).

Параметры схемы замещения системы.

Ом.

Параметры схемы замещения генераторов на ЭС.

Ом.

Параметры схемы замещения двигателей на ЭС.

Ом.

Параметры схемы замещения трансформаторов на ЭС.

Ом.

Параметры схемы замещения реактора на ЭС.

Ом.

Параметры схемы замещения трансформаторов в системе.

Ом.

Ом.

Ом.

Параметры схемы замещения нагрузки в системе.

Ом

Ом

Ом.

Параметры схемы замещения линий в системе.

Ом

Рис.5. Схема замещения обратной последовательности электроэнергетической системы с учётом эквивалентирования заданных участков системы.

3.1.3. Схема замещения нулевой последовательности с учётом эквивалентирования заданных участков системы (в именованных единицах).

Параметры схемы замещения системы.

Ом.

Параметры схемы замещения трансформатора на ЭС.

Ом.

Параметры схемы замещения трансформатора в системе.

Ом.

Параметры схемы замещения линий в системе (на участке ИВ-220 – вводимый объект).

Ом

Параметры схемы замещения линий в системе (на участке вводимый объект – ИВ-4).

Ом.

Рис.6. Схема замещения нулевой последовательности электроэнергетической системы с учётом эквивалентирования заданных участков системы.

3.2. Приведение схем замещения к простейшему виду методом преобразований.

3.2.1. Приведение схемы прямой последовательности к простейшему виду методом преобразования.

1.

Ом.

кВ.

Ом.

Ом.

кВ.

Ом.

2.

кВ

Ом.

3.

кВ.

Ом.

Ом.

Ом.

Ом.

4.

кВ.

Ом.

5.

Рис.7. Схема замещения прямой последовательности.

кВ.

Ом.

3.2.2. Приведение схемы обратной последовательности к простейшему виду методом преобразования.

1.

Ом.

Ом.

Ом.

Ом.

2.

Ом.

Ом.

Ом.

Ом.

3.

Ом.

Ом.

4.

Рис.8. Схема замещения обратной последовательности.

Ом.

3.2.3. Приведение схемы нулевой последовательности к простейшему виду методом преобразования.

1.

Ом.

Ом.

2.

Ом.

3.

Рис.9. Схема замещения нулевой последовательности.

Ом.

3.3. Расчёт дополнительного сопротивления (аварийного шунта) и построение эквивалентной схемы прямой последовательности.

Рис.10. Эквивалентная схема прямой последовательности.

Ом.

3.4. Расчёт симметричных составляющих токов и напряжений в месте повреждения и построение по ним векторных диаграмм токов и напряжений для точки КЗ.

Особая фаза – В.

кА.

кВ.

Граничные условия:

кА.

Расчёт величин напряжений:

кВ.

кВ.

Рис.11. Векторная диаграмма токов для точки К2.

Рис.12 Векторная диаграмма напряжений для точки К2.

3.5. Графическое определение по векторным диаграммам фазных величин токов и напряжений в месте повреждения.

кА.

кВ.

3.6. Расчёт полного тока повреждённой фазы по аналитическому выражению и сопоставление его со значением, найденным графически.

кА.

3.7. Расчёт  тока трёхфазного КЗ на шинах высшего напряжения электростанции и сопоставление его с найденным током несимметричного КЗ.

кА.

Вывод: ток трёхфазного КЗ на шинах высшего напряжения электростанции больше, чем ток однофазного КЗ на шинах высшего напряжения электростанции.

3.8. Расчёт распределения симметричных составляющих токов и напряжений в схемах замещения отдельных последовательностей и определение их значений в заданном сечении     (при несимметричном КЗ).

Для прямой последовательности:

кА.

кВ.

кА

кВ.

кВ.

кА.

Для обратной последовательности:

кА.

кВ.

кА

кВ.

кВ.

кА.

Для нулевой  последовательности:

кВ.

кА.

3.9. Построение для сечения векторных диаграмм токов и напряжений. Графическое определение их фазных величин с выражением в именованных единицах для ступени трансформации, соответствующей сечению.

Рис.13. Векторная диаграмма напряжений для сечения .

Рис.14. Векторная диаграмма токов для сечения .

Значения фазных величин для ступени трансформации, соответствующей сечению.

Фазные величины напряжений:                                       Фазные величины токов:

кВ;                              кА;  

кВ;                               кА;  

кВ;                             кА;  

4. РАСЧЁТ ИЗМЕНЕНИЯ ВО ВРЕМЕНИ ТОКА ТРЁХФАЗНОГО КЗ В МЕСТЕ ПОВРЕЖДЕНИЯ НА ШИНАХ НИЗШЕГО НАПРЯЖЕНИЯ ЭЛЕКТРОСТАНЦИИ (К1).

4.1. Расчёт изменения тока КЗ в месте повреждения по составляющим от отдельных типов источников с применением метода типовых кривых. Построение графиков огибающих периодических слагающих токов.

В данном случае рассматриваемая схема будет иметь следующий вид:

Рис. 15. Рассматриваемая схема.

;

Начальные значения периодических составляющих:

Так как система удалена от места КЗ то кА.

кА;             кА.

Номинальные токи машин:

кА.

кА.

Удалённость КЗ от синхронной машины характеризуется отношением действующего значения периодической составляющей тока этой машины в начальный момент КЗ к номинальному току машины:  .

;

;

Для определения действующего значения периодической составляющей t тока КЗ в произвольный момент времени воспользуемся кривыми на рис. П1.1 [1] (для генератора) и на рис. П1.2 [1] (для электродвигателя).

Полученные значения заносим в таблицу 1.

Таблица 1.

t

0

0,025

0,05

0,075

0,1

0,125

0,15

0,175

0,2

1

0,85

0,8

0,75

0,725

0,705

0,69

0,68

0,67

11,169

9,5

8,94

8,38

8,1

7,87

7,7

7,6

7,5

1

0,67

0,5

0,38

0,3

0,25

0,18

0,15

0,12

0,09745

0,0653

0,0487

0,037

0,0292

0,0244

0,0175

0,0146

0,0117

Для расчётов используем следующую формулу:

Рис. 16. Графики огибающих периодических слагающих токов.

4.2. Расчёт изменения наиболее возможной апериодической слагающей тока КЗ в месте повреждения по составляющим от отдельных типов источников. Построение графиков.

кА.

кА.

кА.

Рис. 17. Графики апериодических слагающих тока КЗ.

4.3. Определение значения ударного тока КЗ в месте повреждения по составляющим от отдельных типов источников.

кА.

кА.

кА.

кА.

4.4. Построение графической зависимости изменения мгновенных значений тока КЗ в месте повреждения от системы.

кА.

Рис. 18. Изменение мгновенного значения тока КЗ в месте повреждения от системы.

ЗАКЛЮЧЕНИЕ.

В результате выполнения данной курсовой работы были получены следующие результаты:

1. Во второй части – ток трёхфазного КЗ – 19,62 кА.

2. В третьей части – ток однофазного КЗ – 13,6 кА, а ток трёхфазного КЗ – 20,227 кА.

3. В четвёртой части – ток ударного КЗ – 51,24 кА.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ.

1. Расчёт режимов короткого замыкания в электроэнергетической системе. Сборник заданий для курсовой работы. /Иван. энерг. ин-т; Сост.А.А. Братолюбов., А.Е. Аржанникова. – Иваново. 2001.

2. Ульянов С. А. Электромагнитные переходные процессы в электрических системах.-М.-Л.: Энергия, 1964.

3. Расчёт режима симметричного короткого замыкания в электрической системе. Методические указания для самостоятельной работы студентов./Иван. энерг. ин-т; Сост.А.А. Братолюбов. – Иваново. 1989.


 

А также другие работы, которые могут Вас заинтересовать

79184. Техника и технознание в рамках синергетической парадигмы. Техника как самоорганизующаяся система 22.5 KB
  Шеррингтон называл синергетическим или интегративным согласованное воздействие нервной системы спинного мозга при управлении мышечными движениями. Забуский в 1967 году пришёл к выводу о необходимости единого синергетического подхода понимая под этим совместное использование обычного анализа и численной машинной математики для получения решений разумно поставленных вопросов математического и физического содержания системы уравнений[3]. Синергетический подход в естествознании Основные принципы Природа иерархически структурирована в...
79185. Техника и технознание в футурологических теориях. Особенности развития техники в постиндустриальном обществе 15.58 KB
  Концепция информационного общества является разновидностью теории постиндустриального общества. Капитал и труд как основа индустриального общества уступают место информации и знанию в информационном обществе. Теория технотронного общества по З.Бжезинскому социологическая концепция исходящая из того что новые технологии и электроника являются решающим фактором социально-экономических изменений и социального прогресса конвергенции различных систем и предопределяют вступление общества в технотронную эру.
79186. Философский дискурс техники и технознания, его сущность, предмет и специфика в общей системе философского знания. Философия науки и философия техники в их соотношении 38 KB
  Здесь переплетается несколько критических путей развития естествознания и технознания: – развитие теории подобия освоение новых форм подобия физических процессов в том числе на основе принципов симметрии спиральноколиброванных фиббоначиевыми рядами процессов развития в природе освоение технологий гибридного моделирования в том числе на основе теории гибридных интеллектуальных систем В. Венда; – развитие термодинамического и вышедшего из него синергетического моделирования; – развитие теории планирования эксперимента на базе...
79187. Техника как объект философской рефлексии: типология основных концепций. Смысл и сущность технической деятельности. Проблема технико-технологической демаркации 41 KB
  Сам Поппер характеризует свои интересы в этой области следующим образом: В то время меня интересовал не вопрос о том когда теория истиннаldquo; и не вопрос когда теория приемлема Я поставил перед собой другую проблему. Отсюда следовало что любая теория претендующая на то чтобы быть научной должна быть выводима из опыта. Любая развитая теория формулируется не для реальных а для идеальных объектов. Теория строится на базе предпосылок прямо противоречащих опыту.
79188. Проблематика генезиса техники и научного статуса технознания. Историко-философские проблемы развития науки и техники, типология основных подходов 46.5 KB
  Историкофилософские проблемы развития науки и техники типология основных подходов. В современной литературе по философии техники можно выделить следующие основные подходы к решению проблемы изменения соотношения науки и техники: 1 техника рассматривается как прикладная наука; 2 процессы развития науки и техники рассматриваются как автономные но скоординированные процессы; 3 наука развивалась ориентируясь на развитие технических аппаратов и инструментов; 4 техника науки во все времена обгоняла технику повседневной жизни;...
79189. Специфика технознания, философско-методологические аспекты соотношения с фундаментальной и прикладной наукой 34 KB
  Выявление специфики технических наук осуществляется обычно следующим образом: технические науки сопоставляются с естественными и общественными науками и параллельно рассматривается соотношение фундаментальных и прикладных исследований. При этом могут быть выделены следующие позиции: 1 технические науки отождествляются с прикладным естествознанием; 2 естественные и технические науки рассматриваются как равноправные научные дисциплины; 3 в технических науках выделяются как фундаментальные так и прикладные исследования. Технические науки...
79190. Техническая и научная рациональность в их соотношении. Типология рациональных обобщений в технознании, историческая эволюция и современные тенденции 54 KB
  Техническая и научная рациональность в их соотношении. Эффективность лишь самый общий признак рациональных действий и если сводить рациональность лишь к нему то можно впасть в ошибку слишком широкого определения. Рациональность это свойство выбора между альтернативами поведения человека: осмысление им окружающей действительности и последующие действия могут в большей или меньшей степени ей соответствовать. Рациональность категория мышления отражающая следование при достижении цели обусловленным эффективностью методологических нормам...
79191. Проблематика соотношения рационального и иррационального в технознании. Техника как артефакт 41.5 KB
  Именно здесь выступает контур грандиозной картины: как без внешних принуждений и насилия привести человека к хорошей и счастливой жизни в разреженном воздухе рациональности Отсюда вытекает дополнительный пункт при рассмотрении ошибки в дискурсе о рациональности. пища тоже; явления же первой природы интересуют нас или как сырье то есть опять как момент техники или как экологические условия параметры которых мы должны поддерживать для жизни человека а следовательно это тоже продукт нашей деятельности или как эстетический феномен...
79192. Проблема онтологического статуса техники. Абстракция и идеализация в технознании, особенности идеального объекта технической теории 31.5 KB
  Их следует отличать от объектов реальности. Реальные объекты представлены в эмпирическом познании в образе идеальных объектов обладающих жестко фиксированным и ограниченным набором признаков. Ни одна теория не строится без применения таких объектов. Идеализированные теоретические объекты в отличие от эмпирических объектов наделены не только теми признаками которые мы можем обнаружить в реальном взаимодействии объектов опыта но и признаками которых нет ни у одного реального объекта.