26788

Квадратичная аппроксимация (МНК)

Домашняя работа

Математика и математический анализ

Это значит: Создать механизм обеспечивающий сохранение анонимности точек зрения отдельных лиц и тем самым свести к минимуму влияние красноречивых и обладающих даром убеждать личностей на поведение группы в целом. Все взаимодействия между членами группы находятся под контролем со стороны координатора. Групповая оценка вычисляется им путем некоторого усреднения обычно посредством нахождения среднего значения или медианы и доводится до сведения всех членов группы. Метод Дельфы определяет следующий способ действий: Опросить каждого...

Русский

2013-08-18

85 KB

10 чел.

Квадратичная аппроксимация (МНК)

Функция задана в виде таблицы. Для одного и того же значения  аргумента могут быть заданы несколько разных значений функции. Нужно найти уравнение либо прямой линии, либо кривой второй степени (параболы) либо еще более высокой степени полином (алгебраический многочлен), который лучше всего передавал бы на чертеже наиболее характерные свойства расположения заданных экспериментальных точек. Карл Гаусс предложил способ, который называется методом наименьших квадратов (другое название – квадратичная аппроксимация).  По этому способу надо решить некоторую систему уравнений, из которых определятся коэффициенты Сi искомой кривой (или прямой). Например:  y = C0 + C1x +C2x2                                                                    

Идея состоит в том, что  минимизируют сумму квадратов невязок, то есть несовпадений между заданными точками таблицы и положением найденной кривой (прямой). Если эти невязки измерять в направлении оси Oy, то найденную линию называют регрессией  Y на Х. А если в направлении, параллельном оси Ох, то это регрессия Х на Y.

Квадратичная аппроксимация (МНК)

Через имеющееся "облако" точек всегда можно попытаться провести линию установленного вида, которая является наилучшей в определенном смысле среди всех линий данного вида, то есть "ближайшей" к точкам наблюдений по их совокупности. Для этого определим вначале понятие близости линии к некоторому множеству точек на плоскости. Меры такой близости могут быть различными. Однако, любая разумная мера должна быть, очевидно, связана с расстоянием от точек наблюдения до рассматриваемой линии (задаваемой уравнением y=F(x)).

Предположим, что приближающая функция F(x) в точках х1, x2, ..., xn имеет значения y1, y2, ..., yn. Часто в качестве критерия близости используется минимум суммы квадратов разностей наблюдений зависимой переменной yi и теоретических, рассчитанных по уравнению регрессии значений yi. Здесь считается, что yi и xi - известные данные наблюдений, а F - уравнение линии регрессии с неизвестными параметрами (формулы для их вычисления будут приведены ниже). Итак, задачу приближения функции f теперь можно сформулировать следующим образом: для функции f, заданной таблицей (1), найти функцию F определенного вида так, чтобы сумма квадратов Ф была наименьшей.

Модели жизненного цикла информационных систем. Краткая характеристика

Модель ЖЦ ИС – это структура, определяющая последовательность процессов, действий и задач, выполняемых на протяжении ЖЦ ИС, а также взаимосвязи между ними.

К настоящему времени наибольшее распространение получили следующие две основные модели ЖЦ ИС: каскадная модель (модель «водопад» – waterfall) и спиральная модель.

Каскадная модель жизненного цикла ИС (например Oracle)

Каскадная модель предполагает разработку расчетных систем, БЖД, систем реального времени, ОС

КМ предусматривает последовательную организацию работ. При этом основной особенностью является разбиение всей разработки на этапы, причем переход с одного этапа на следующий происходит только после того, как будут полностью завершены все работы на предыдущем этапе. Каждый этап завершается выпуском полного комплекта документации, достаточной для того, чтобы разработку могла продолжить другая группа разработчиков.

Основные этапы разработки по КМ

  •  анализ требований заказчика;
  •  проектирование;
  •  разработка;
  •  тестирование и опытная эксплуатация;
  •  сдача готового проекта.

Спиральная модель жизненного цикла ИС (например RAD)

Спиральная модель (СМ) предполагает итерационный процесс разработки ИС. При этом возрастает значение начальных этапов ЖЦ таких, как анализ и проектирование. На этих этапах проверяется и обосновывается реализуемость технических решений путем создания прототипов.

Итерации

Каждая итерация представляет собой законченный цикл разработки, приводящий к выпуску внутренней или внешней версии изделия (или подмножества конечного продукта). От итерации к итерации версия совершенствуется, чтобы в кончном итоге стать законченной системой, удовлетворяющей всем требованиям заказчика  (см. схему).

Таким образом, каждый виток спирали соответствует созданию версии программного изделия; на нем уточняются цели и характер проекта, определяется его качество, планируются работы следующего витка спирали. На каждой итерации углубляются и последовательно конкретизируются детали проекта, в результате чего выбирается обоснованный вариант, который доводится до окончательной реализации.

Хранимые процедуры

С точки зрения приложений, работающих с БД, хранимые процедуры (Stored Procedure) — это подпрограммы, которые выполняются на сервере. По отношению к БД — это объекты, которые создаются и хранятся в БД. Они могут быть вызваны из клиентских приложений. При этом одна процедура может быть использована в любом количестве клиентских приложений, что позволяет существенно сэкономить трудозатраты на создание прикладного программного обеспечения и эффективно применять стратегию повторного использования кода. Так же как и любые процедуры в стандартных языках программирования, хранимые процедуры могут иметь входные и выходные параметры или не иметь их вовсе. Хранимые процедуры могут быть активизированы не только пользовательскими приложениями, но и триггерами.

Хранимые процедуры пишутся на специальном встроенном языке программирования, они могут включать любые операторы SQL, а также включают некоторый набор операторов, управляющих ходом выполнения программ, которые во многом схожи с подобными операторами процедурно ориентированных языков программирования. Хранимые процедуры являются объектами БД. Каждая хранимая процедура компилируется при первом выполнении, в процессе компиляции строится оптимальный план выполнения процедуры. Описание процедуры совместно с планом ее выполнения хранится в системных таблицах БД.

По умолчанию выполнить хранимую процедуру может только ее владелец, которым является владелец БД, и создатель хранимой процедуры. Однако владелец хранимой процедуры может делегировать права на ее запуск другим пользователям. Хранимые процедуры могут быть использованы несколькими приложениями. Хранимые процедуры также играют ключевую роль в повышении быстродействия при работе в сети с архитектурой «клиент—сервер».

Методология IDEF

Метод IDEF1 также основан на подходе Чена и позволяет построить модель данных, эквивалентную реляционной модели в третьей нормальной форме. В настоящее время на основе совершенствования метода IDEF1 создана его новая версия - метод IDEF1X, разработанный с учетом таких требований, как простота для изучения и возможность автоматизации. IDEFlX-диаграммы используются в ряде распространенных CASE-средств (в частности, ERwin, Design/IDEF).

Сущность в методе IDEF1X является не зависимой от идентификаторов или просто независимой, если каждый экземпляр сущности может быть однозначно идентифицирован без определения его отношений с другими сущностями. Сущность называется зависимой от идентификаторов или просто зависимой, если однозначная идентификация экземпляра сущности зависит от его отношения к другой сущности.

Каждой сущности присваиваются уникальное имя и номер, разделяемые косой чертой "/" и помещаемые над блоком.

        Независимая сущность:                                                                                Зависимая сущность:

                                                           

Связь может дополнительно определяться с помощью указания степени или мощности (количества экземпляров сущности-потомка, которое может существовать для каждого экземпляра сущности-родителя). В IDEF1X могут быть выражены следующие мощности связей:

  •  каждый экземпляр сущности-родителя может иметь 0, 1 или более одного связанного с ним экземпляра сущности-потомка;
  •  каждый экземпляр сущности-родителя должен иметь не менее одного связанного с ним экземпляра сущности-потомка;
  •  каждый экземпляр сущности-родителя связан с некоторым фиксированным числом экземпляров сущности-потомка.

Если экземпляр сущности-потомка однозначно определяется своей связью с сущностью-родителем, то связь называется идентифицирующей, иначе – неидентифицирующей.

Связь изображается линией, проводимой между сущностью-родителем и сущностью-потомком, с точкой на конце линии у сущности-потомка.

          

Идентифицирующая связь между сущностью-родителем и сущностью-потомком изображается сплошной линией. Сущность-потомок в идентифицирующей связи является зависимой от идентификатора сущности родителя. Пунктирная линия изображает неидентифицирующую связь. Атрибуты изображаются в виде списка имен внутри блока сущности. Атрибуты, определяющие первичный ключ, размещаются наверху списка и отделяются от других атрибутов горизонтальной чертой.

IDEF — методологии семейства ICAM (Integrated Computer-Aided Manufacturing) для решения задач моделирования сложных систем, позволяет отображать и анализировать модели деятельности широкого спектра сложных систем в различных разрезах. При этом широта и глубина обследования процессов в системе определяется самим разработчиком, что позволяет не перегружать создаваемую модель излишними данными.

IDEF — методологии создавались в рамках предложенной ВВС США программы компьютеризации промышленности — ICAM, в ходе реализации которой выявилась потребность в разработке методов анализа процессов взаимодействия в производственных (промышленных) системах. Принципиальным требованием при разработке рассматриваемого семейства методологий была возможность эффективного обмена информацией между всеми специалистами — участниками программы ICAM (отсюда название: Icam DEFinition — IDEF другой вариант — Integrated DEFinition). После опубликования стандарта он был успешно применен в самых различных областях бизнеса, показав себя эффективным средством анализа, конструирования и отображения бизнес-процессов. Более того, собственно с широким применением IDEF (и предшествующей методологии — SADT) и связано возникновение основных идей популярного ныне понятия — BPR (бизнес-процесс реинжиниринг).

Информационная модель. Основные способы сбора исходных данных. Метод Дэльфы

Метод Дельфы был разработан в корпорации РЭНД.

Это итерационная процедура, которая позволяет подвергать мнение каждого эксперта критике со стороны всех остальных, не заставляя их фактически сталкиваться лицом к лицу. Это значит:

  •  Создать механизм, обеспечивающий сохранение анонимности точек зрения отдельных лиц и тем самым свести к минимуму влияние красноречивых и обладающих даром убеждать личностей на поведение группы в целом.
  •  Все взаимодействия между членами группы находятся под контролем со стороны координатора. Координатор регулирует процедуру анализа мнений и сохраняет их анонимность.
  •  Групповая оценка вычисляется им путем некоторого усреднения (обычно посредством нахождения среднего значения, или медианы) и доводится до сведения всех членов группы.

Рассмотрим в качестве примера распространенную задачу определения значения некоторого числа N. Пусть в группе экспертов будет 12 членов. Метод Дельфы определяет следующий способ действий:

  1.  Опросить каждого члена группы по отдельности, какова его оценка числа N.
    1.  Расположить ответы на общей шкале в порядке возрастания значений и определить квартили Q1, M и Q3 таким образом, чтобы в каждом из четырех отрезков шкалы содержалась четвертая часть всех оценок. Результат при 12 членах группы будет выглядеть, так, как это показано на рисунке.
    2.  Сообщить каждому из членов группы значения Q1, M и Q3 и попросить его пересмотреть свою оценку, а если его новая оценка выше Q3 или ниже Q1 попросить его кратко письменно обосновать свое мнение
    3.  Подсчитать результаты второго тура и сообщить членам группы новые значения Q1, M и Q3 (обычно эти значения будут иметь меньшую дисперсию, чем после первого тура) вместе с письменными обоснованиями предельных значений (обязательно сохраняя анонимность мнений). Попросить каждого, из экспертов, представивших письменные ответы, учесть новые данные и аргументацию и при желании пересмотреть свою предыдущую оценку. Если в этом третьем туре пересмотренная оценка у данного члена группы будет выше Q3 или ниже Q1, попросить его кратко обосновать, почему он счел не заслуживающими внимания аргументы, которые могли бы заставить его сместить свою оценку ближе к средней оценке.
    4.  Повторять эту процедуру столько раз, сколько представляется желательным координатору, или пока промежуток между Q1 и Q3 сузится до некоторой заранее установленной величины. Для этого обычно требуется всего три или четыре тура, поскольку аргументы скоро начинают повторяться. Далее берется медиана как представляющая групповое мнение относительно того, каким должно быть значение N.

 

Необязательно стремиться, во что бы то ни стало к полному единству оценок: разброс мнений — нормальное явление даже в последнем туре.

Вместо использования медианы и квартилей можно брать среднее значение и среднеквадратическое отклонение. В этом случае координатор сообщает членам группы в каждом туре среднее значение и среднеквадратическое отклонение и просит их кратко обосновать все оценки, отличающиеся от среднего значения больше, чем на среднеквадратическое отклонение (в любую сторону). Опросы можно повторять до тех пор, пока среднеквадратическое отклонение не уменьшится до заданной величины или пока не станет ясно, что дальнейшего уменьшения дисперсии оценок не будет.

Цель метода Дельфы — уменьшить психологическое давление, испытываемое некоторыми людьми при личном контакте, и, следовательно, исключить влияние на конечный результат особо красноречивой или сильной личности. Однако метод нельзя считать полностью надежным. Отмеченные недостатки:

  •  Неизвестно, какое влияние на расхождение мнений оказывает желание участников приспособиться к общему мнению группы.
  •  Возложение на членов группы ответственности за обоснование своих мнений явно влечет за собой стремление экспертов располагать оценки ближе к медиане без особой аргументации.
  •  Участники, которые первоначально были уверены, что обладают сильными аргументами в пользу своего мнения, легко могут отказаться от своих позиций, когда видят, что им не удалось сразу же убедить остальных членов группы. Это может усилить «эффект толпы» вместо того, чтобы уменьшить его, как ожидалось.

Метод Дельфы, предполагающий анонимность мнений, итеративную процедуру обработки результатов, управляемую обратную связь, числовые оценки и статистическое определение групповой оценки, является ценным инструментом исследования для разработчиков имитационных моделей. По данным опросов:

  •  Личные дискуссии не дают столь же эффективных результатов, как метод Дельфы.
  •  Точность оценки улучшается с ростом числа членов группы и количества итераций.
  •  Точность оценки падает с увеличением интервала времени между ответами членов группы.
  •  При использовании, метода Дельфы достигается большее согласие между групповым мнением и мнениями отдельных членов группы, чем при методах, требующих личных контактов. Эта сторона дела, очевидно, особенно важна, если некоторые из членов группы являются руководящими работниками, ответственными за внедрение результатов имитационного моделирования.

Безусловно, на этапе построения информационной модели возможен возврат на этап разработки формальной модели.

Уникальный 32-битный IP-адрес в InterNet

Типы адресов: Физический (MAC-адрес), Сетевой (IP-адрес), Символьный (DNS-имя). Компьютер в сети TCP/IP может имееть адреса трех уровней (но не менее двух):

  •  Локальный адрес компьютера. Для узлов, входящих в локальные сети - это МАС-адрес сетевого адаптера. Эти адреса назначаются производителями оборудования и являются уникальными адресами.
  •  IP-адрес, состоящий из 4 байт, например, 109.26.17.100. Этот адрес используется на сетевом уровне. Он назначается администратором во время конфигурирования компьютеров и маршрутизаторов. 
  •  Символьный идентификатор-имя (DNS), например, www.kstu.ru.

IPv4 - адрес является уникальным 32-битным идентификатором IP-интерфейса в Интернет. IP-адреса принято записывать разбивкой всего адреса по октетам (8), каждый октет записывается в виде десятичного числа, числа разделяются точками. Например, адрес 10100000010100010000010110000011 записывается как

10100000.01010001.00000101.10000011 = 160.81.5.131

IP-адрес может быть от 0.0.0.0 до 255.255.255.255. IP-адрес хоста состоит из номера IP-сети, который занимает старшую область адреса, и номера хоста в этой сети, который занимает младшую часть.

160.81.5.131 - IP-адрес

160.81.5. - номер сети

131 -  номер хоста


 

А также другие работы, которые могут Вас заинтересовать

49442. Магистральная волоконно-оптическая линия связи 1.33 MB
  Приложение Задание Спроектировать магистральную волоконно-оптическую линию связи. Одним из важнейших достижений последнего десятилетия в области связи несомненно является создание волоконно-оптических систем передачи ВОСП на базе использования волоконно-оптических линий связи ВОЛС. Использование волоконно-оптических линий связи и систем передачи информации позволяет повысить надежность помехозащищенность скрытность и пропускную способность линий связи Перспективы развития оптической связи связаны с новыми технологиями:...
49443. Мост передний ведущий МАЗ 5434-2300010-20 244 KB
  Данный мост технологичен и ремонтопригоден. Его конструкция в определённых пределах проста, узлы, по возможности, выполнены небольших габаритов и массы, при этом их число минимально. Конструкция моста обеспечивает удобство сборки, места расположения крепежных элементов доступны для сборочного инструмента.
49444. ДИСКРЕТНАЯ ОБРАБОТКА СИГНАЛОВ И ЦИФРОВАЯ ФИЛЬТРАЦИЯ 7.43 MB
  Произвести сравнение результатов вычислений: сравнить форму спектра дискретизированной последовательности со спектром исходного аналогового сигнала; установить связь между: результатом Zпреобразования и спектральной плотностью дискретизированной последовательности; спектром исходного периодического аналогового сигнала и дискретными отсчётами его спектральной плотности.2...
49445. Проект подстанции для ткацкого цеха №3 предприятия ОАО ХБК «Шуйские ситцы» 646.8 KB
  Проектируем подстанцию для ткацкого цеха № 3 ООО «Новогоркинская мануфактура». Подстанция получает питание от ГПП расположенного на расстоянии L=0.25 км. Напряжение питания – 6.3 кВ. Подстанция питает ткацкий цех площадью 4520м2, в котором установлено 385 ткацких станков АТПР-100-2У, вентиляционную установку мощностью – 210 кВт
49446. Схема замкнутой системы электропривода 786.3 KB
  Составление математического описания системы 1.1 приведена принципиальная схема замкнутой системы электропривода состоящего из: двигателя постоянного тока независимого возбуждения М; тиристорного преобразователя ТП с системой импульснофазового управления СИФУ управляемыми вентилями В и дросселем Др; операционного усилителя У1 реализующего устройство коррекции УК обеспечивая необходимый из условий статики коэффициент усиления замкнутого контура системы и заданные динамические свойства замкнутой системы; сумматора на операционном...