27107

Операти́вная па́мять

Доклад

Информатика, кибернетика и программирование

Память Оперативка энергозависимая часть системы компьютерной памяти в которой временно хранятся данные и команды необходимые процессору для выполнения им операции. Обязательным условием является адресуемость каждое машинное словоимеет индивидуальный адрес памяти. Содержащиеся в оперативной памяти данные доступны только тогда когда на модули памяти подаётся напряжение то есть компьютер включён. Пропадание на модулях памяти питания даже кратковременное приводит к искажению либо полному уничтожению данных в ОЗУ.

Русский

2013-08-19

71 KB

1 чел.

Операти́вная па́мять (англ. Random Access Memory, память с произвольным доступом; комп. жарг. ПамятьОперативка) — энергозависимая часть системы компьютерной памяти, в которой временно хранятся данные и команды, необходимые процессору для выполнения им операции. Обязательным условием является адресуемость (каждое машинное словоимеет индивидуальный адрес) памяти.

Обмен данными между процессором и оперативной памятью производится:

  1.  непосредственно,
  2.  либо через сверх быструю память, 0-го уровня — регистры в АЛУ, либо при наличии кэша — через него.

Содержащиеся в оперативной памяти данные доступны только тогда, когда на модули памяти подаётся напряжение, то есть, компьютер включён. Пропадание на модулях памяти питания, даже кратковременное, приводит к искажению либо полному уничтожению данных в ОЗУ.

Энергосберегающие режимы работы материнской платы компьютера позволяют переводить его в режим «сна», что значительно сокращает уровень потребления компьютером электроэнергии. Для сохранения содержимого ОЗУ в таком случае, применяют запись содержимого оперативной памяти в специальный файл (в системе Windows XP он называется hiberfil.sys).

В общем случае, оперативная память содержит данные операционной системы и запущенных на выполнение программ, поэтому от объёма оперативной памяти зависит количество задач, которые одновременно может выполнять компьютер.

Оперативное запоминающее устройствоОЗУ — техническое устройство, реализующее функции оперативной памяти.

ОЗУ может изготавливаться как отдельный блок или входить в конструкцию, например однокристальной ЭВМ или микроконтроллера.

История

В 1834 году Чарльз Бэббидж начал разработку Аналитической машины. Одна из важных частей этой машины называлась «Склад» (store), и предназначалась для хранения промежуточных результатов вычислений. Результаты запоминались с использованием валов и шестерней.

ЭВМ первого поколения можно считать ещё экспериментальными, поэтому в них использовалось множество разновидностей запоминающих устройств: на ртутных линиях задержкиэлектронно-лучевых и электростатических трубках. В качестве оперативной памяти использовался также магнитный барабан: он обеспечивал достаточное для компьютеров тех времён быстродействие и использовался в качестве основной памяти для хранения программ и вводимых данных.

Второе поколение требовало более технологичных в производстве схем оперативной памяти. Наиболее распространённым видом памяти в то время стала память на магнитных сердечниках.

Начиная с третьего поколения большинство узлов компьютеров стали выполнять на микросхемах, в том числе и оперативную память. Наибольшее распространение получили два вида ОЗУ: на основе конденсаторов (динамическая память) и триггеров (статическая память). Оба этих вида памяти не способны сохранять данные при отключении питания — для этой цели используется Энергонезависимая память.

ОЗУ современных компьютеров

ОЗУ большинства современных компьютеров представляет собой модули динамической памяти, содержащие полупроводниковые ИС ЗУ, организованные по принципу устройств с произвольным доступом. Память динамического типа дешевле, чем статического, и её плотность выше, что позволяет на том же пространстве кремниевой подложки размещать больше ячеек памяти, но при этом её быстродействие ниже. Статическая, наоборот, более быстрая память, но она и дороже. В связи с этим массовую оперативную память строят на модулях динамической памяти, а память статического типа используется для построения кеш-памяти внутри микропроцессора.

Память динамического типа

Основная статья: DRAM

Экономичный вид памяти. Для хранения разряда (бита или трита) используется схема, состоящая из одного конденсатора и одного транзистора (в некоторых вариациях конденсаторов два). Такой вид памяти решает, во-первых, проблему дороговизны (один конденсатор и один транзистор дешевле нескольких транзисторов) и во-вторых, компактности (там, где в SRAM размещается один триггер, то есть один бит, можно уместить восемь конденсаторов и транзисторов). Есть и свои минусы. Во-первых, память на основе конденсаторов работает медленнее, поскольку если в SRAM изменение напряжения на входе триггера сразу же приводит к изменению его состояния, то для того чтобы установить в единицу один разряд (один бит) памяти на основе конденсатора, этот конденсатор нужно зарядить, а для того чтобы разряд установить в ноль, соответственно, разрядить. А это гораздо более длительные операции (в 10 и более раз), чем переключение триггера, даже если конденсатор имеет весьма небольшие размеры. Второй существенный минус — конденсаторы склонны к «стеканию» заряда; проще говоря, со временем конденсаторы разряжаются. Причём разряжаются они тем быстрее, чем меньше их ёмкость.

За то, что разряды в ней хранятся не статически, а «стекают» динамически во времени, память на конденсаторах получила своё название динамическая память. В связи с этим обстоятельством, дабы не потерять содержимое памяти, заряд конденсаторов для восстановления необходимо «регенерировать» через определённый интервал времени. Регенерация выполняется центральным микропроцессором или контроллером памяти, за определённое количество тактов считывания при адресации по строкам. Так как для регенерации памяти периодически приостанавливаются все операции с памятью, это значительно снижает производительность данного вида ОЗУ.

Память статического типа

Основная статья: SRAM (память)

ОЗУ, которое не надо регенерировать (и обычно схемотехнически собранное на триггерах), называется статической памятью с произвольным доступом или просто статической памятью. Достоинство этого вида памяти — скорость. Поскольку триггеры собраны на вентилях, а время задержки вентиля очень мало, то и переключение состояния триггера происходит очень быстро. Данный вид памяти не лишён недостатков. Во-первых, группа транзисторов, входящих в состав триггера, обходится дороже, даже если они вытравляются миллионами на одной кремниевой подложке. Кроме того, группа транзисторов занимает гораздо больше места, поскольку между транзисторами, которые образуют триггер, должны быть вытравлены линии связи. Используется для организации сверхбыстрого ОЗУ, критичного к скорости работы.

Из чего состоит ядро оперативной памяти

Ядро микросхемы оперативной памяти состоит из огромного количества ячеек памяти, которые объединены в прямоугольные таблицы – матрицы. Горизонтальные линейки матрицы называют строками, а вертикальные столбцами. Весь прямоугольник матрицы называться страницей, а совокупность страниц называется банком.

Горизонтальные и вертикальные линии являются проводником, на пересечении горизонтальных и вертикальных линий и находятся ячейки памяти.

Из чего состоит ячейка памяти

Ячейка памяти состоит из одного полевого транзистора и одного конденсатора. Конденсатор выполняет роль хранителя информации, он может хранить один бит данных, то есть либо логическую единицу (когда он заряжен), либо логический ноль (когда он разряжен). Транзистор выполняет роль электрического ключа, который либо удерживает заряд на конденсаторе, либо открывает для считывания.

Регенерация памяти

Конденсатор, который служит хранителем данных, имеет микроскопические размеры и как следствие маленькую ёмкость, и ввиду этого не может долго хранить заряд заданный ему, по причине саморазряда. Для борьбы с этой проблемой, используется регенерация памяти, которая, с определённой периодичностью считывает ячейки и записывает заново. Благодаря подобному явлению, эта память и получила название динамической.

Чтение памяти

Если нам нужно прочитать память, то на определённую строку страницы памяти, подаётся сигнал, который открывает транзистор и пропускает электрический заряд, который содержится (или не содержится) в конденсаторе на соответствующий столбец. К каждому столбцу подключен чувствительный усилитель, который реагирует на незначительный поток электронов выпущенных с конденсатора. Но тут есть нюанс – сигнал, поданный на строку матрицы, открывает все транзисторы данной строки, так как они все подключены на данную строку, и таким образом происходит чтение всей строки. Исходя из вышесказанного, становится ясно, что строка в памяти, является минимальной величиной для чтения – прочитать одну ячейку, не затронув другие невозможно.

Процесс чтения памяти является деструктивным, так как прочитанный конденсатор отдал все свои электроны, что бы его услышал чувствительный усилитель. И по этому, после каждого чтения строки, её нужно записать заново.

Интерфейс памяти

У интерфейсной части памяти следует выделить линии адреса и линии данных. Линии адреса указывают на адрес ячейки, а линии данных производят чтение и запись памяти.


 

А также другие работы, которые могут Вас заинтересовать

84541. Роль клапанів серця у гемодинаміці. Тони серця, механізми їх походження ФКГ, її аналіз 42.92 KB
  Клапани розташовані при вході та при виході обох шлуночків серця. Мітральний та трьохстулковий клапани перешкоджають зворотньому закиду крові регургітації крові в передсердя під час систоли шлуночків. Перший систолічний тон виникає на початку систоли шлуночків. Його формують такі компоненти: закриття стулок передсердношлуночкового клапану; це основний компонент першого тону дає осциляції найбільшої висоти виникає на межі фаз ізометричного та асинхронного скорочень; міокардіальний компонент повязаний із напруженням та вібрацією...
84542. Артеріальний пульс, його походження СФГ, її аналіз 43.09 KB
  При аналізі СФГ враховують перш за все стан стінок крупних артеріальних судин. Про це можна судити за конфігурацією СФГ вираженості окремих її хвиль. Розрахунок тривалості серцевого циклу проводять по полікардіограмі синхронно зареєстровані ЕКГ ФКГ СФГ.
84543. Регуляція діяльності серця. Міогенні та місцеві нервові механізми регуляції діяльності серця 40.8 KB
  Міогенні та місцеві нервові механізми регуляції діяльності серця. Баланс притоку та відтоку крові притік крові до серця по венозних судинах; відтік за рахунок активного вигнання крові шлуночками серця; 2. Рівний хвилинний обєм крові ХОК правого та лівого відділів серця; 3.
84544. Місцеві міогенні механізми регуляції серцевої діяльності 48.71 KB
  Залежність ССС від вихідної довжини КМЦ. Залежність ССС від опору вигнанню рівня артеріального тиску. Залежність ССС від ЧСС. Тому суть цього механізму можна викласти так: чим більше крові притікає до серця під час діастоли тим більша вихідна довжина КМЦ тим більша ССС СО.
84545. Характер і механізми впливів симпатичних нервів на діяльність серця. Роль симпатичних рефлексів в регуляції серцевої діяльності 44.58 KB
  Характер впливів симпатичної нервової системи на серце: позитивний інотропний вплив посилює силу серцевих скорочень; позитивний хронотропний вплив посилює ЧСС; позитивний дромотропний вплив посилює швидкість проведення збудження по елементам провідної системи серця особливо по передсердношлуночковому вузлу структурам провідної системи шлуночків; позитивний батмотропний вплив збільшення збудливості. Медіатор норадреналін взаємодіє переважно з βадренорецепторами оскільки αадренорецепторів тут майже немає при цьому...
84546. Характер і механізми впливів парасимпатичних нервів на діяльність серця. Роль парасимпатичних рефлексів в регуляції серцевої діяльності 44.78 KB
  Механізм впливів блукаючого нерва на серце повязаний із дією медіатора ацетилхоліну на мхолінорецептори КМЦ типових і атипових. В результаті підвищується проникність мембран КМЦ для йонів калію посилення виходу йонів із клітини за градієнтом концентрації що в свою чергу веде до: розвитку гіперполяризації мембран КМЦ; найбільше цей ефект виражений в клітинах з низьким вихідним рівнем мембранного потенціалу найбільше в вузлах АКМЦ: пазуховопередсердному та передсердношлуночковому де МПС = 60мВ; менше в КМЦ передсердь; найменше ...
84547. Гуморальна регуляція діяльності серця. Залежність діяльності серця від зміни йонного складу крові 44.41 KB
  Залежність діяльності серця від зміни концентрації йонів в плазмі крові. Найбільше клінічне значення має вплив йонів калію. При гіпокаліємії зниження концентрації йонів калію в плазмі крові нижче 1ммоль л розвиваються різноманітні електрофізіологічні зміни в КМЦ. Характер змін в КМЦ залежить від того що переважає: втрата йонів калію клітинами чи міжклітинною рідиною.
84548. Особливості структури і функції різних відділів кровоносних судин у гемодинаміці. Основний закон гемодинаміки 52.71 KB
  При такому підході видно що кровоносна система є замкненою системою в яку послідовно входять два насоси і судини легень і паралельно судини решти областей. Судини у системі крові виконують роль шляхів транспорту. Рух крові по судинам описує основний закон гемодинаміки: де Р1 тиск крові на початку судини Р2 в кінці судини R тиск який здійснює судина току крові Q обємна швидкість кровотоку обєм який проходить через поперечний переріз судини за одиницю часу. Отже рівняння можна прочитати так: обєм крові що проходить...
84549. Значення в’язкості крові для гемодинаміки. Особливості структури та функції різних відділів судинної системи 44 KB
  Вязкість крові залежить від таких 2ох факторів. Від зміни лінійної швидкості руху крові. Вязкість крові складає 45 50 умовних одиниць а плазми 17 23 гривні.