27107

Операти́вная па́мять

Доклад

Информатика, кибернетика и программирование

Память Оперативка энергозависимая часть системы компьютерной памяти в которой временно хранятся данные и команды необходимые процессору для выполнения им операции. Обязательным условием является адресуемость каждое машинное словоимеет индивидуальный адрес памяти. Содержащиеся в оперативной памяти данные доступны только тогда когда на модули памяти подаётся напряжение то есть компьютер включён. Пропадание на модулях памяти питания даже кратковременное приводит к искажению либо полному уничтожению данных в ОЗУ.

Русский

2013-08-19

71 KB

1 чел.

Операти́вная па́мять (англ. Random Access Memory, память с произвольным доступом; комп. жарг. ПамятьОперативка) — энергозависимая часть системы компьютерной памяти, в которой временно хранятся данные и команды, необходимые процессору для выполнения им операции. Обязательным условием является адресуемость (каждое машинное словоимеет индивидуальный адрес) памяти.

Обмен данными между процессором и оперативной памятью производится:

  1.  непосредственно,
  2.  либо через сверх быструю память, 0-го уровня — регистры в АЛУ, либо при наличии кэша — через него.

Содержащиеся в оперативной памяти данные доступны только тогда, когда на модули памяти подаётся напряжение, то есть, компьютер включён. Пропадание на модулях памяти питания, даже кратковременное, приводит к искажению либо полному уничтожению данных в ОЗУ.

Энергосберегающие режимы работы материнской платы компьютера позволяют переводить его в режим «сна», что значительно сокращает уровень потребления компьютером электроэнергии. Для сохранения содержимого ОЗУ в таком случае, применяют запись содержимого оперативной памяти в специальный файл (в системе Windows XP он называется hiberfil.sys).

В общем случае, оперативная память содержит данные операционной системы и запущенных на выполнение программ, поэтому от объёма оперативной памяти зависит количество задач, которые одновременно может выполнять компьютер.

Оперативное запоминающее устройствоОЗУ — техническое устройство, реализующее функции оперативной памяти.

ОЗУ может изготавливаться как отдельный блок или входить в конструкцию, например однокристальной ЭВМ или микроконтроллера.

История

В 1834 году Чарльз Бэббидж начал разработку Аналитической машины. Одна из важных частей этой машины называлась «Склад» (store), и предназначалась для хранения промежуточных результатов вычислений. Результаты запоминались с использованием валов и шестерней.

ЭВМ первого поколения можно считать ещё экспериментальными, поэтому в них использовалось множество разновидностей запоминающих устройств: на ртутных линиях задержкиэлектронно-лучевых и электростатических трубках. В качестве оперативной памяти использовался также магнитный барабан: он обеспечивал достаточное для компьютеров тех времён быстродействие и использовался в качестве основной памяти для хранения программ и вводимых данных.

Второе поколение требовало более технологичных в производстве схем оперативной памяти. Наиболее распространённым видом памяти в то время стала память на магнитных сердечниках.

Начиная с третьего поколения большинство узлов компьютеров стали выполнять на микросхемах, в том числе и оперативную память. Наибольшее распространение получили два вида ОЗУ: на основе конденсаторов (динамическая память) и триггеров (статическая память). Оба этих вида памяти не способны сохранять данные при отключении питания — для этой цели используется Энергонезависимая память.

ОЗУ современных компьютеров

ОЗУ большинства современных компьютеров представляет собой модули динамической памяти, содержащие полупроводниковые ИС ЗУ, организованные по принципу устройств с произвольным доступом. Память динамического типа дешевле, чем статического, и её плотность выше, что позволяет на том же пространстве кремниевой подложки размещать больше ячеек памяти, но при этом её быстродействие ниже. Статическая, наоборот, более быстрая память, но она и дороже. В связи с этим массовую оперативную память строят на модулях динамической памяти, а память статического типа используется для построения кеш-памяти внутри микропроцессора.

Память динамического типа

Основная статья: DRAM

Экономичный вид памяти. Для хранения разряда (бита или трита) используется схема, состоящая из одного конденсатора и одного транзистора (в некоторых вариациях конденсаторов два). Такой вид памяти решает, во-первых, проблему дороговизны (один конденсатор и один транзистор дешевле нескольких транзисторов) и во-вторых, компактности (там, где в SRAM размещается один триггер, то есть один бит, можно уместить восемь конденсаторов и транзисторов). Есть и свои минусы. Во-первых, память на основе конденсаторов работает медленнее, поскольку если в SRAM изменение напряжения на входе триггера сразу же приводит к изменению его состояния, то для того чтобы установить в единицу один разряд (один бит) памяти на основе конденсатора, этот конденсатор нужно зарядить, а для того чтобы разряд установить в ноль, соответственно, разрядить. А это гораздо более длительные операции (в 10 и более раз), чем переключение триггера, даже если конденсатор имеет весьма небольшие размеры. Второй существенный минус — конденсаторы склонны к «стеканию» заряда; проще говоря, со временем конденсаторы разряжаются. Причём разряжаются они тем быстрее, чем меньше их ёмкость.

За то, что разряды в ней хранятся не статически, а «стекают» динамически во времени, память на конденсаторах получила своё название динамическая память. В связи с этим обстоятельством, дабы не потерять содержимое памяти, заряд конденсаторов для восстановления необходимо «регенерировать» через определённый интервал времени. Регенерация выполняется центральным микропроцессором или контроллером памяти, за определённое количество тактов считывания при адресации по строкам. Так как для регенерации памяти периодически приостанавливаются все операции с памятью, это значительно снижает производительность данного вида ОЗУ.

Память статического типа

Основная статья: SRAM (память)

ОЗУ, которое не надо регенерировать (и обычно схемотехнически собранное на триггерах), называется статической памятью с произвольным доступом или просто статической памятью. Достоинство этого вида памяти — скорость. Поскольку триггеры собраны на вентилях, а время задержки вентиля очень мало, то и переключение состояния триггера происходит очень быстро. Данный вид памяти не лишён недостатков. Во-первых, группа транзисторов, входящих в состав триггера, обходится дороже, даже если они вытравляются миллионами на одной кремниевой подложке. Кроме того, группа транзисторов занимает гораздо больше места, поскольку между транзисторами, которые образуют триггер, должны быть вытравлены линии связи. Используется для организации сверхбыстрого ОЗУ, критичного к скорости работы.

Из чего состоит ядро оперативной памяти

Ядро микросхемы оперативной памяти состоит из огромного количества ячеек памяти, которые объединены в прямоугольные таблицы – матрицы. Горизонтальные линейки матрицы называют строками, а вертикальные столбцами. Весь прямоугольник матрицы называться страницей, а совокупность страниц называется банком.

Горизонтальные и вертикальные линии являются проводником, на пересечении горизонтальных и вертикальных линий и находятся ячейки памяти.

Из чего состоит ячейка памяти

Ячейка памяти состоит из одного полевого транзистора и одного конденсатора. Конденсатор выполняет роль хранителя информации, он может хранить один бит данных, то есть либо логическую единицу (когда он заряжен), либо логический ноль (когда он разряжен). Транзистор выполняет роль электрического ключа, который либо удерживает заряд на конденсаторе, либо открывает для считывания.

Регенерация памяти

Конденсатор, который служит хранителем данных, имеет микроскопические размеры и как следствие маленькую ёмкость, и ввиду этого не может долго хранить заряд заданный ему, по причине саморазряда. Для борьбы с этой проблемой, используется регенерация памяти, которая, с определённой периодичностью считывает ячейки и записывает заново. Благодаря подобному явлению, эта память и получила название динамической.

Чтение памяти

Если нам нужно прочитать память, то на определённую строку страницы памяти, подаётся сигнал, который открывает транзистор и пропускает электрический заряд, который содержится (или не содержится) в конденсаторе на соответствующий столбец. К каждому столбцу подключен чувствительный усилитель, который реагирует на незначительный поток электронов выпущенных с конденсатора. Но тут есть нюанс – сигнал, поданный на строку матрицы, открывает все транзисторы данной строки, так как они все подключены на данную строку, и таким образом происходит чтение всей строки. Исходя из вышесказанного, становится ясно, что строка в памяти, является минимальной величиной для чтения – прочитать одну ячейку, не затронув другие невозможно.

Процесс чтения памяти является деструктивным, так как прочитанный конденсатор отдал все свои электроны, что бы его услышал чувствительный усилитель. И по этому, после каждого чтения строки, её нужно записать заново.

Интерфейс памяти

У интерфейсной части памяти следует выделить линии адреса и линии данных. Линии адреса указывают на адрес ячейки, а линии данных производят чтение и запись памяти.


 

А также другие работы, которые могут Вас заинтересовать

21464. Анализ современного состояния техники ранней диагностики ВОЛП 706 KB
  Очевидно что длины волн используемые для передачи данных и для рефлектометрического контроля волокна в этом случае должны быть разными. В этой точке устанавливается оптический коммутатор OTU который по очереди включает волокна всех направлений в оптический путь сигналов рефлектометра RTU. Другой подход предполагает одновременное распространение сигнала рефлектометра по всем ответвляющимся волокнам. Согласно данным фирмы Fujikur по степени опасности для волокна можно выделить три диапазона значений его относительного удлинения.
21465. Двухчастотные лазерные интерферометры 1.42 MB
  Все оснащение лазерной измерительной головки заключающееся в системе программного и инструментального обеспечения измерения предназначено для линейных и угловые измерений измерения плоскостности измерения прямолинейности измерения взаимоперпендикулярности и измерения скорости перемещения. Дискрет измерения равен  при статистической обработке сигнала fd его можно уменьшить в 10 раз. Таким образом дискретность измерения интерферометра не превышает 001 мкм. Чтобы исключить ошибку связанную с температурным расширением основания на...
21466. Частота и частотные характеристики лазерного излучения 168.5 KB
  Для одной моды в том случае когда реализуется одномодовый режим можно ввести такой параметр как ширина линии излучения . Время когерентности и длина когерентности вводятся также и для многочастотного излучения. Особенность свойств когерентности излучения фемтосекундного лазера.
21467. Стандарты частоты газовые 1.6 MB
  Лазеры точнее лазерное излучение позволили создать такие источники оптического излучения с такими узкими линиями излучения которые в принципе не могли существовать в естественных условиях. С развитием лазеров появилась возможность не только управлять но и стабилизировать частоту оптического излучения. В результате этого решения появилась возможность на базе лазеров у которых частота излучения и длина волны излучения в вакууме связаны простым соотношением создавать стандарты частоты и длины волны.
21468. Одночастотный лазерный интерферометр Майкельсона. Принципы измерения расстояний и линейных перемещений 395.5 KB
  1 Упрощенная схема интерферометра Майкельсона При рассмотрении двухлучевых интерферометров следует обратить внимание на временные и пространственные фазы излучения. Поскольку основным уравнением интерферометрии является уравнение для интенсивности излучения сформированного двумя полями 1 2...
21469. Лазерный доплеровский анемометр 610.5 KB
  Движущиеся вместе с газовым потоком частицы рассматриваются как приемники световых волн от неподвижного источника и одновременно как передатчикиретрансляторы оптического излучения к неподвижному наблюдателю. Частота рассеянного излучения в точке наблюдения равна: 1 где ν – частота излучения источника; с – скорость света; u – проекция скорости частицы в направлении на точку наблюдения. Итак Доплеровская частота сигнала на выходе фотоприемника зависит от длины волны лазерного излучения скорости частиц и геометрии оптической системы....
21470. Пример одночастотного лазерного интерферометра Майкельсона. Абсолютный баллистический гравиметр 10.6 MB
  3 Принцип определения ускорения свободного падения На практике калибруются только частота длина волны лазерного излучения и частота встроенного опорного стандарта частоты для измерения интервалов времени.1 нм что равно 1 17 от длины волны 633 нм лазерного излучения.5 Направления применения гравиметрической информации g Corrections: instrumentl nd geophysicl tides ocen loding polr motion Motion eqution of freeflling body in the grvity field: TTL signl longperiod seismometer or ctive vibroisoltion system t 633 nm or 532 nm FG5216...
21471. Волоконный гироскоп 412 KB
  Принцип действия оптического гироскопа основан на эффекте Саньяка Рис. При радиусе оптического пути время достижения расщепителя лучей светом движущимся по часовой стрелке выражается как 1 в противоположном направлении 2 где с скорость света. Она не зависит от формы оптического пути положения центра вращения и коэффициента преломления. Структурные схемы гироскопов на эффекте Саньяка r и l частота генерации света с правым и левым вращением;  время необходимое для однократного прохождения светом...
21472. Оптическая мышка 277 KB
  До появления этих мышей да и еще долго после этого большинство массовых компьютерных грызунов были оптомеханическими перемещения манипулятора отслеживались оптической системой связанной с механической частью двумя роликами отвечавшими за отслеживание перемещения мыши вдоль осей Х и Y; эти ролики в свою очередь вращались от шарика перекатывающегося при перемещении мыши пользователем. На основании анализа череды последовательных снимков представляющих собой квадратную матрицу из пикселей разной яркости интегрированный DSP...