27380

Изучение смысла сложения и вычетания

Доклад

Педагогика и дидактика

Этот подход легко интерпретируется на уровне предметных действий позволяя тем самым учитывать психологические особенности младших школьников. Например в учебнике М1М в качестве основного средства формирования у детей представлений о смысле действий сложения и вычитания выступают простые текстовые задачи. В основе другого подхода лежит выполнение учащимися предметных действий и их интерпретация в виде графических и символических моделей. Деятельность учащихся сначала сводится к переводу предметных действий на язык математики а затем к...

Русский

2013-08-19

18.9 KB

26 чел.

Изучение смысла +и - .

В курсе математики начальных классов находит отражение теоретико-множественный подход к истолкованию сложения и вычитания целых неотрицательных чисел (натуральных и нуля), в соот¬етствии с которым сложение целых неотрицательных чисел связано с операцией объединения попарно непересекающихся конечных множеств, вычитание - с операцией дополнения выделенного подмножества. Этот подход легко интерпретируется на уровне предметных действий, позволяя тем самым учитывать психологические особенности младших школьников.

Однако методическая интерпретация данного подхода может быть различной. Например, в учебнике М1М в качестве основного средства формирования у детей представлений о смысле действий сложения и вычитания выступают простые текстовые задачи.

В основе другого подхода лежит выполнение учащимися предметных действий и их интерпретация в виде графических и символических моделей. В качестве основной цели здесь выступает не решение простых задач, а осознание предметного смысла числовых выражений и равенств. Деятельность учащихся сначала сводится к переводу предметных действий на язык математики, а затем к установлению соответствия между различными моделями. Например, детям предлагается картинка, на которой Миша и Маша запускают рыбок в один аквариум. Организуя ^деятельность учащихся сданной предметной иллюстрацией, учитель ориентируется на следующие этапы:

♦ Дети рассказывают, что делают Миша и Маша на картинках (запускают рыбок в один аквариум; запускают рыбок вместе в аквариум, объединяют рыбок; Миша запускает в аквариум 2 рыбки, Маша - 3).

Ответы детей могут быть разными, но учителю важно подчеркнуть, что рыбки Миши и Маши объединяются вместе в одном аквариуме.

♦ Затем учитель сообщает, что действия Миши и Маши можно записать на языке математики. Эти записи даны под картинками и являются математическими выражениями, которые в математике называют суммой. Выясняется, чем похожи эти выражения (в каждом два числа и знак +) и как можно эти выражения прочитать по-разному (2 плюс 3, к двум прибавить три, сложить числа 2 и 3).

♦ Дети упражняются в чтении данных выражений.

♦ Теперь нужно соотнести каждое из этих выражений с соответствующей картинкой. Выполняя это задание, дети ориентируются на число предметов, которые объединяют Миша и Маша.

♦ Помимо выражений каждой картинке можно поставить в соответствие определенное число. (Об этом дети также могут догадаться, пересчитав предметы на каждой картинке.)

♦ В результате этой работы учитель показывает, как записать равенство, и знакомит детей с этим понятием, а также с термином «значение суммы».

Затем числовые равенства интерпретируются на числовом луче.

В процессе выполнения предметных действий у ребенка формируется представление о сложении как о действии, которое связано с увеличением количества предметов.

Указанием к выполнению предметных действий может явиться задание: «Покажи ...». Например, учитель предлагает задание: «У Коли было 4 марки. Ему подарили еще 2. Покажи, сколько марок стало у Коли».

Для разъяснения смысла сложения можно также опираться на представления детей о соотношении целого и его частей. В этом случае для приведенной выше ситуации все марки Коли (целое) будут состоять из двух частей: марки, которые у него «были», и марки, которые ему «подарили».

Обозначая целое и части их числовыми значениями, дети получают выражение (4+2) или равенство (4+2=6).

Изучение смысла + и основные этапы смысла +

Школьник должен прийти к выводу, что + это операция, которая приводит к увеличению  количества предметов.

Изучение вычислительных приемов имеет подлинно образовательное значение, так как практически подводит детей к пониманию основных законов и свойств арифметических действий.

Дело не ограничивается присчитыванием и отсчитыванием двух и трех по единице. Сочетательное свойство выступает затем в виде присчитывания трех и четырех группами, а затем с увеличением второго слагаемого вводится прием перестановки слагаемых, что является новым шагом в овладении понятием сложения. И, как всегда, успех этого шага зависит прежде всего от правильного использования наглядности как опоры для соответствующего рассуждения.

Параллельное изучение сложения и вычитания позволяет попутно раскрывать связь между этими действиями как взаимно-обратными, что составляет также существенный этап в раскрытии арифметических понятий. Выполнение вычитания на основе сложения — первый шаг к тому определению вычитания, которое дается в теоретической арифметике.

Огромное образовательное значение имеет в дальнейшем вдумчивая работа над нумерацией в пределах второго десятка и первой сотни, а также работа в новых условиях над вычислительными приемами сложения и вычитания. Переход к действиям второй ступени — умножению и делению — представляет собою новый этап в системе работы над арифметическими понятиями.

Задачи изучения арифметических действий:

Довести до сознания детей смысл рассматриваемых действий, научить их правильно выбирать нужное арифметическое действие при решении различных простых задач.

На доступном для младших школьников уровне и в доступной для них форме познакомить их с теми свойствами рассматриваемых действий, которые являются теоретической основой изучаемых приемов устных и письменных вычислений. Научить применять изученные свойства в разнообразных условиях, используя соответствующие знания в целях рационализации вычислений, а также в целях отыскания наиболее рационального способа решения задач.

Обеспечить усвоение детьми связей, существующих между действиями. Научить применять соответствующие знания: а) в вычислениях (при нахождении частного с опорой на знание соответствующего случая умножения, при нахождении разности с опорой на знание соответствующего случая сложения); б) при проверке правильности выполненных вычислений; в) при решении задач на нахождение неизвестного компонента действий и г) при решении простейших уравнений.

Обеспечить сознательное и прочное усвоение детьми основных приемов устных и письменных вычислений, умение сознательно выбирать такие из известных приемов вычислений, которые более всего отвечают особенностям каждого конкретного примера.

Сформировать у детей сознательные и прочные навыки быстрых и правильных вычислений.

При изучении сложения и вычитания в пределах 10, а затем и сотни дети знакомятся с вычислительными приемами, основанными на использовании свойств действий (переместительное свойство суммы, различные способы прибавления числа к сумме и суммы к числу, вычитания числа из суммы и суммы из числа), а также на основе понимания связи между сложением и вычитанием. При этом, как уже отмечалось, вся работа, связанная с рассмотрением этих свойств и разнообразных приемов вычислении, подчиняется задаче рационализации вычислений.

Важнейшей задачей первого года обучения в отношении формирования вычислительных навыков является такое усвоение детьми табличных случаев сложения и вычитания, которое обеспечивало бы возможность автоматизированных вычислений при сложении однозначных чисел и формирования навыков быстрых устных вычислений с двузначными числами.

Каждое из четырех арифметических действий должно прочно связаться в сознании детей с теми конкретными задачами, которые требуют его применения. Смысл действий и раскрывается главным образом на основе практических действий с множествами предметов и на системе соответствующих текстовых задач.

На их основе доводится до сознания детей связь между компонентами и результатами действий, связь между действиями, рассматриваемые свойства действий и изучаемые математические отношения.


 

А также другие работы, которые могут Вас заинтересовать

63143. Урок мужності і героїзму присвячений 70-річчю визволення Києва від німецько-фашистських загарбників 25.09 KB
  Мета: формувати в учнів початкової школи почуття патріотизму, любові до свого народу, його історії та героїчного минулого на прикладі подвигу людей, які загинули під час окупації та визволення Києва від німецько-фашистських загарбників; виховувати повагу...
63145. Тваринництво рідного краю 19.63 KB
  Мета: формувати поняття про тваринництво як галузь сільського господарства; дати знання про галузі тваринництва; розкрити їх значення для людини; виховувати патріотичне ставлення до землі рідного краю любов до України пошану до людей та їхньої праці.