2766

Проектирование сварных конструкций

Книга

Архитектура, проектирование и строительство

Конструкции сварные и их проектирование как учебная дисциплина имеет свои задачи - системное формирование у студентов знаний и общих представлений о современном состоянии теоретических основ проектирования сварных конструкций, методах расчета и проектирования сварных конструкций.

Русский

2015-01-11

2.93 MB

345 чел.

Конструкции сварные и их проектирование как учебная дисциплина имеет свои задачи - системное формирование у студентов знаний и общих представлений о современном состоянии теоретических основ проектирования сварных конструкций, методах расчета и проектирования сварных конструкций.

Основными задачами дисциплины являются: изучение методов расчета сварных соединений и конструкций в условиях статического и циклического нагружения, изучение послесварочного напряженно-деформированного состояния сварных соединений и влияния его на прочность конструкций.

В результате изучения дисциплины студент должен:

знать:

  •  об особенностях работы конструкции при различных условиях нагружения;
  •  об основных принципах оценки работоспособности конструкций;

знать и уметь использовать:

  •  методы расчета сварных конструкций при различных видах нагружения;
  •  методы рационального проектирования сварных конструкций, обеспечивающие наименьшую их материалоемкость;
  •  влияние остаточных сварочных напряжений и деформаций на качество сварных конструкций;

уметь:

  •  определять величины и распределение остаточных сварочных напряжений и деформаций в конструкции;
  •  определять механические характеристики сварных соединений;
  •  рассчитывать прочность сварных соединений.

Изучение дисциплины «Проектирование сварных конструкций» базируется на знаниях студентов, полученных при изучении математических и общих естественнонаучных дисциплин: математики, физики, а также дисциплин общепрофессионального цикла: сопротивление материалов, материаловедения.

  1.  Распределение часов по видам учебных занятий и виды отчетности

Табл. 1.1

Распределение нагрузки по видам занятий

Виды учебной работы

Всего

часов

Семестры

6

7

Общая трудоемкость дисциплины

170

93

77

Аудиторные занятия

84

46

38

Лекции

48

26

22

Практические занятия

20

20

Лабораторные работы

16

16

Самостоятельная работа студентов

86

47

39

Расчетно-графическая работа

+

+

Курсовая работа

+

+

Вид итогового контроля

зачет

экзамен

  1.  Основная литература
    1.  Николаев Г.А., Винокуров В.А., Сварные конструкции. Расчет и проектирование. - М.: Высшая школа. / 1990.-446 с..
      1.  Серенко А.Н., Крумбольт М.Н., Багрянский К.В. Расчет сварных соединений и конструкций Киев: Вища школа, 1977.- 336 с.
      2.  Сварка и свариваемые материалы. Справочник в 3-х т. / под общ. Ред.В.Н. Волченко т.1: Свариваемость материалов, под ред. Э.П. Макарова -М.:Металлургия, 1991.-528 с.
    2.  Дополнительная литература
      1.  Одесский П.Д. Предотвращение хрупких разрушений металлических строительных конструкций/П.Д. Одесский, И.И. Ведяков, В.М. Горпинченко. - М.: Интермет Инжиниринг, 1998.-220 с.
      2.  Стеклов О.И. Стойкость материалов и конструкций к коррозии под напряжением. – М: Машиностроение, 1990. 383 с.
      3.  Проектирование сварных конструкций в машиностроении. Атлас / под ред. С.А. Куркина-М: Машиностроение, 1975.- 336 с.
      4.  Металлические конструкции. Спец. курс: Учебное пособие /Е.Н. Беленя и др. М: Стройиздат, 1991.-678 с.
      5.  Терентьев В. Ф. Усталостная прочность металлов и сплавов / В. Ф. Терентьев.-М.: Интермет Инжиниринг, 2002.-288 с.; 21см
      6.  Сосуды и трубопроводы высокого давления. Справочник / под ред. Е.Р.Хисматуллина и др.- М.: Машиностроение, 1990.-584 с.
    3.  Методические разработки
      1.  Методические указания к лабораторным работам по дисциплине «Проектирование сварных конструкций» по направлению 551800 и по специальности 120500 «Оборудование и технология сварочного производства» - Уфа: изд. УГАТУ, 1996.- 26с.
      2.  Методические указания к курсовой работе по дисциплине "Расчет и проектирование сварных конструкций Уфа: УГАТУ 2005.- 24 с.
    4.  Литература к курсовому проектированию
      1.  Руденко Н.Ф. курсовое проектирование грузоподъемных машин. – М.: Машиностроение, 1971.
      2.  Александров, А. В. Сопротивление материалов : [учебник для студентов вузов] / А. В. Александров, В. Д. Потапов, Б. П. Державин ; под ред. А. В. Александрова .— Изд. 6-е, стер. — М. : Высшая школа, 2008 .— 560 с.
      3.  Курсовое проектирование грузоподъемных машин : [Учеб. пособие для машиностроит. спец. вузов] / Казак С.А. и др.;Под ред. С.А.Казака .— М. : Высш.шк., 1989 .— 319с.
  2.  Прочность сварных конструкций
    1.  Общие сведения

Классификация сварных конструкций

Сварные конструкции делят на стержневые, листовые и машиностроительные.

  •  Стержневые конструкции – каркасы строительных зданий, специальные конструкции (мачты, каркаса ЛА).
  •  Листовые конструкции – резервуары, газгольдеры, котлы, корпуса ЛА.
  •  Машиностроительные конструкции – валы рамы, станины и др.

Любая деталь, узел, конструкция, сооружение должны отвечать требованиям работоспостобности и надежности.

Работоспособность. Работоспособностью называют состояние объектов, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской (проектной) документации.

Надежность. Под надежностью понимают свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования. Надежность является комплексным свойством, которое в зависимости от назначения объекта и условий его применения может включать безотказность, долговечность, ремонтопригодность и сохраняемость или определенные сочетания этих свойств. Любая современная машина или прибор, какими бы высокими характеристиками они не обладали, будут обесценены при ненадежной работе. Надежность зависит от всех этапов создания и эксплуатации изделий. Отказы в основном связаны с разрушениями (статическими, малоцикловыми и усталостными), изнашиванием и недостаточной жесткостью. Поэтому задачи обеспечения прочности, жесткости и износостойкости являются основными в проблеме надежности.

Работоспособность и надежность деталей машин оцениваются определенными условиями и показателями – критериями. Важнейшими из них являются:

1) прочность – способность детали сопротивляться разрушению;

2) жесткость – способность деталей сопротивляться изменению формы, является одной из характеристик работоспособности деталей машин;

3) износостойкость, коррозионная стойкость, виброустойчивость и др.

При расчете и проектировании деталей обычно используют один или два критерия, а остальные критерии удовлетворяются заведомо или не имеют практического значения для рассматриваемых объектов.

  1.  Прочность

Прочность – понятие довольно широкое. Существует инженерное и научное понятие прочности.

Под инженерной прочностью понимают способность материала сопротивляться пластическому деформированию, разрушению, способность конструкции сопротивляться потере устойчивости, потере коррозионной стойкости и др.

В научном более узком смысле понимают сопротивление разрушению материала.

Расчетная и конструкционная прочность

Конструкционная прочность – прочность, определенная путем испытаний конструкции или ее имитатора с учетом материала вида нагружения, условий эксплуатации и технологии ее изготовления.

Кроме экспериментальных методов на прочность используют методы расчетные.

Расчетная прочность – прочность найденная расчетом, путем использования простейших характеристик материала и аппарата теории связывающего эти характеристики с величиной прочности.

Запас прочности – отношение одноименных величин одна из которых соответствует предельному состоянию, а другая состоянию эксплуатации.

При расчете необходим учет условий нагружения, и возможный характер разрушения.

Нагрузки могут быть:

  •  статическими – характеризуются весьма малыми скоростями нагружения;
  •  повторностатическими – один цикл не чаще чем раз в секунду;
  •  вибрационными – частота цикла превышает 1Гц;
  •  ударными – характеризуются весьма высокими скоростями нагружения.

Разрушение может быть:

  •  вязким – разрушение идет по телу зерна, место разрушения имеет матовый цвет под микроскопом;
  •  хрупким – разрушение идет по границам зерен, место разрушения имеет блестящий цвет под микроскопом;разрушающие напряжежения ниже предела текучести материала.
  •  полувязким – разрушение идет частично по границам зерен, а частично по телу зерна.
    1.  Жесткость

Жесткость - способность деталей сопротивляться изменению формы, является одной из характеристик работоспособности деталей машин. Жесткость оценивают по величине силы, вызывающей единичное перемещение (линейное или угловое) некоторой точки или сечения детали. Так, удлинение при растяжении стержня силой P 

Δl=Pl/(EA) ( 2.1)

а жесткость стержня при растяжении, Н/мм

c=P/∆ℓ=EA/ℓ ( 2.2)

Характеристику, обратную жесткости, называют податливостью (мм/Н)

λ=1/c=ℓ/EA ( 2.3)

т. е. податливость равна перемещению сечения стержня (детали) под действием силы в .

  1.  Устойчивость

Расчеты на прочность и жесткость всегда ведутся исходя из предположения о том, что нагруженная конструкция занимает единственно возможное положение, в котором уравновешиваютя внешие силы, и вызманные ими внутренние силовые факторы.

В действительности же в деформированном состоянии равновесие между внешними и вызываемыми ими внутренними силами упругости может быть не только устойчивым, но и неустойчивьм.

Упругое равновесие будет устойчивым, если деформированное тело при любом малом отклонении от состояния равновесия стремится возвратиться к первоначальному состоянию и возвращается к нему после удаления внешнего воздействия, нарушившего первоначальное равновесное состояние. Упругое равновесие неустойчиво. если деформированное тело, будучи выведено из него каким-либо воздействием, приобретает стремление продолжать деформироваться в направлении данного ему отклонения и после удаления воздействия в исходное состояние не возвращается. Между этими двумя состояниями равновесий существует переходное состояние, называемое критическим, при котором деформированное тело находится в безразличном равновесии: оно может сохранить первоначально приданную eму форму, но может и потерять ее от самого незначительного воздействия.

Можно утверждать, что достижение нагрузками критических значений равносильно разрушению конструкции, так как неустойчивая форма равновесия неминуемо будет утрачена, что связано с практически неограниченным ростом деформаций и напряжений. Особая опасность разрушения вследствие потери устойчивости заключается в том, что обычно она происходит внезапно и при низких значениях напряжений, когда прочность элемента еще далеко не исчерпана.

До момента наступления критического состояния упругие деформации по величине весьма незначительны и нарастание их происходит почти незаметно для глаза. Но с момента наступления критического состояния до момента разрушения остаточные деформации нарастают крайне быстро, и практически нет времени принять меры по предотвращению грозящей катастрофы. Таким образом, при расчете на устойчивость критическая нагрузка подобна разрушающей при расчете на прочность. Для обеспечения определенного запаса устойчивости необходимо, чтобы удовлетворялось условие.

  1.  Расчет строительных конструкций по методу «Предельных состояний»

Расчет на прочность может производиться по одной из двух методик - по предельному состоянию, или по допускаемым напряжениям. Методика расчета по допускаемым напряжениям принята при расчете машиностроительных конструкций, и основы ее использования приведены в курсе «Сопротивления материалов». При расчете строительных конструкций принята методика расчета по предельному состоянию, более совершенная, чем методика расчета по допускаемым напряжениям.

Предельное напряженное состояние – состояние, когда в точке возникает напряженное состояние, ведущее к возникновению нового процесса. Например, к развитию пластической деформации, к образованию трещины и т.д. Различные ПНС возникают при различных видах нагружения.

Предельное состояние – такое состояние, при котором конструкция теряет работоспособность или ее состояние становится нежелательной. Усилия вызывающие предельное состояние называются предельными

Следует различать предельные состояния и предельные напряженные состояния. Не всегда эти понятия совпадают. Примеры:

Увеличение напряжений при изгибе балки до предела текучести приводит достижению ПНС в точках максимально удаленных от нейтральной линии. Дальнейшее увеличение нагрузки приводит к достижению напряжениями уровня предела текучести во всем сечении – предельного состояния в сечении, в конструкции происходит качественные изменения, перемещения резко увеличиваются, поскольку в наиболее нагруженном сечении образуется пластический шарнир.

Увеличение напряжений при растяжении приводит к последовательному появлению следующих предельных напряженных состояний: а) начала равномерной пластической деформации; б) образования шейки; в) разрушения.

Метод расчета по предельным состояниям

В соответствии с ГОСТ 27751-88 "Надежность строительных конструкций и оснований. Основные положения по расчету" предельные состояния подразделяются на две группы:

  •  первая группа включает предельные состояния, которые ведут к полной непригодности к эксплуатации конструкций, оснований (зданий или сооружений в целом) или к полной (частичной) потере несущей способности зданий и сооружений в целом;
  •  вторая группа включает предельные состояния, затрудняющие нормальную эксплуатацию конструкций (оснований) или уменьшающие долговечность зданий (сооружений) по сравнению с предусматриваемым сроком службы.

Предельные состояния первой группы характеризуются:

  •  разрушением любого характера (например, пластическим, хрупким, усталостным);
  •  потерей устойчивости формы, приводящей к полной непригодности к эксплуатации;
  •  потерей устойчивости положения;
  •  переходом в изменяемую систему;
  •  качественным изменением конфигурации;
  •  другими явлениями, при которых возникает необходимость прекращения эксплуатации (например, чрезмерными деформациями в результате ползучести, пластичности, сдвига в соединениях, раскрытия трещин, а также образованием трещин).

Предельные состояния второй группы характеризуются:

  •  достижением предельных деформаций конструкции (например, предельных прогибов, поворотов) или предельных деформаций основания;
  •  достижением предельных уровней колебаний конструкций или оснований;
  •  образованием трещин;
  •  достижением предельных раскрытий или длин трещин;
  •  потерей устойчивости формы, приводящей к затруднению нормальной эксплуатации;
  •  другими явлениями, при которых возникает необходимость временного ограничения эксплуатации здания или сооружения из-за неприемлемого снижения их срока службы (например, коррозионные повреждения).

Первое предельное состояние для растянутых и сжатых элементов выражается соотношением:

( 2.4)

При расчете на прочность растянутых элементов эксплуатация которых возможна и после достижения металлом предела текучести:

( 2.5)

где – расчетное сопротивление по пределу текучести;

– предел текучести;

– коэффициент надежности по материалу (γС>1);

– расчетное сопротивление по пределу прочности;

– предел прочности;

– коэффициент условий работы (γС <1);

-коэффициент надежности для элементов конструкций, рассчитываемых на прочность с использованием расчетных сопротивлений Ru;

– площадь поперечного сечения растянутого (сжатого) элемента.

Для изгибаемых элементов:

( 2.6)

Формально величину в правой части неравенств ( 2.4), ( 2.5), ( 2.6), мы можем принять за допускаемое напряжение, приемы расчета по предельному состоянию и допускаемым напряжениям совпадают, однако при расчете по предельным состояниям общий и неизменный коэффициент запаса прочности заменяется несколькими переменными величинами. Это позволяет при расчете по предельному состоянию проектировать эксплуатационно равнопрочные конструкции.

При определении расчетных сопротивлений для сварных швов RW учитываются следующее: основной материал сварной конструкции, вспомогательные материалы используемые при сварке (марки покрытых электродов, электродных проволок), наличие либо отсутствие физических методов контроля сварного шва.

  1.  Обозначение на чертежах швов сварных соединений

Обозначение швов сварных соединений выполняется в соответствии с ГОСТ 2.312

Шов сварного соединения, независимо от способа сварки, условно изображают:

видимый - сплошной основной линией;

невидимый - штриховой линией;

Видимую одиночную сварную точку, не зависимо от способа сварки, условно изображают знаком "+", который выполняют сплошными основными линиями.

Невидимые одиночные точки не изображают.

От изображения шва или одиночной точки проводят линию-выноску, заканчивающуюся односторонней стрелкой. Линию-выноску предпочтительно проводить от видимого шва.

На изображение сечения многопроходного шва допускается наносить контуры отдельных проходов, при этом их необходимо обозначить прописными буквами русского алфавита.

Шов, размеры конструктивных элементов которого стандартами не установлены (нестандартный шов), изображаются с указанием размеров конструктивных элементов, необходимых для выполнения шва по данному чертежу).

Границы шва изображают сплошными основными линиями, а конструктивные элементы кромок в границах шва - сплошными тонкими линиями.

Рис. 2.1 Изображение сечения многопроходного шва

 

Рис. 2.2 Изображение нестандартного шва

Вспомогательные знаки для обозначения сварных швов приведены в Табл. 2.1.

В условном обозначении шва вспомогательные знаки выполняют сплошными тонкими линиями.

Вспомогательные знаки должны быть одинаковой высоты с цифрами, входящими в обозначение шва.

Табл. 2.1 Вспомогательные знаки для обозначения сварных швов

Значение вспомогательного знака

Расположение вспомогательного знака относительно полки линии-выноски, проведенной от изображения шва

с лицевой стороны

с оборотной стороны

Усиление шва снять

Наплывы и неровности обработать с плавным переходом к основному металлу

Шов выполнить при монтаже изделия, т.е. при установке его по монтажному чертежу на месте применения

Шов прерывистый или точечный с цепным расположением. Угол наклона линии ~60о

Шов прерывистый или точечный с шахматным расположением

Шов по замкнутой линии. Диаметр знака - 3...5 мм.

Шов по незамкнутой линии. Знак применяют, если расположение шва ясно из чертежа

Примечание:

1. За лицевую сторону одностороннего шва сварного соединения принимают сторону, с которой производят сварку.

2. За лицевую сторону двустороннего шва сварного соединения с несимметрично подготовленными кромками принимают сторону, с которой производят сварку основного шва.

3. За лицевую сторону двустороннего шва сварного соединения с симметрично подготовленными кромками может быть принята любая сторона.

Структура условного обозначения стандартного шва или одиночной сварной точки приведена на Рис. 2.3

Некоторые из стандартов на сварные соединения:

ГОСТ 5264 Ручная дуговая сварка. Соединения сварные. Основные типы, конструктивные элементы и размеры. ГОСТ 8713 Сварка под флюсом. ГОСТ 14771 Дуговая сварка в защитных газах.

Знак выполняют сплошными тонкими линиями. Высота знака должна быть одинаковой с высотой цифр, входящих в обозначение шва.

Структура условного обозначения нестандартного шва или одиночной сварной точки приведена на Рис. 2.4

Рис. 2.3 Структура условного обозначения стандартного шва

Рис. 2.4 Структура условного обозначения нестандартного шва или одиночной сварной точки

В технических требованиях чертежа или таблицы швов указывают способ сварки, которым должен быть выполнен нестандартный шов.

Условное обозначение шва наносят:

а) на полке линии-выноски, проведенной от изображения шва с лицевой стороны (Рис. 2.5, а);

б) под полкой линии-выноски, проведенной от изображения шва с оборотной стороны (Рис. 2.5, б).

а)  б)

Рис. 2.5 Условное обозначение сварного шва. а) - с лицевой стороны; б) - с оборотной стороны.

Обозначение шероховатости механически обработанной поверхности шва наносят на полке или под полкой линии-выноски после условного обозначения шва, или указывают в таблице швов, или приводят в технических требованиях чертежа, например: "Параметр шероховатости поверхности сварных швов ..."

Если для шва сварного соединения установлен контрольный комплекс или категория контроля шва, то их обозначение допускается помещать под линией-выноской (Рис. 2.6)

Рис. 2.6 Обозначение контрольного комплекса или категории контроля шва

Рис. 2.7 Обозначение одинаковых швов

В технических требованиях или в таблице швов на чертеже приводят ссылку на соответствующий нормативно-технический документ.

Сварочные материалы указывают на чертеже в технических требованиях или таблице швов.

Допускается сварочные материалы не указывать.

При наличии на чертеже одинаковых швов обозначение наносится у одного из изображений, от изображений остальных одинаковых швов проводят линии-выноски с полками. Всем одинаковым швам присваивают одинаковый номер, который наносят:

а) на линии-выноске, имеющей полку с нанесенным обозначением шва (Рис. 2.7);

Упрощенное обозначение швов сварных соединений.

При наличии на чертеже швов, выполненных по одному и тому же стандарту, обозначение стандарта указывают в технических требованиях чертежа (запись по типу: "Сварные швы ... по ...") или таблице.

Допускается не присваивать порядковый номер одинаковым швам, если все швы на чертеже одинаковы и изображены с одной стороны (лицевой или обратной). При этом швы, не имеющие обозначения, отмечают линиями-выносками без полок.

Швы считаются одинаковыми, если: одинаковы их типы и размеры конструктивных элементов в поперечном сечении; к ним предъявляются одни и те же требования

Табл. 2.2 Примеры условных обозначений швов сварных соединений

Характеристика шва

Форма поперечного сечения шва

Условное обозначение шва, изображенного на чертеже

с лицевой стороны

с оборотной стороны

Шов стыкового соединения с криволинейным скосом одной кромки, двусторонний, выполняемый дуговой ручной сваркой при монтаже изделия.

Усиление снято с обеих сторон.

Параметр шероховатости шва:

- с лицевой стороны - Rz 20 мкм;

- с оборотной стороны Rz 80 мкм

Одиночные сварные точки соединения внахлестку, выполняемые контактной точечной сваркой. Расчетный диаметр точки 5 мм.

 

Шов соединения внахлестку прерывистый, выполняемый контактной шовной сваркой.

Ширина шва 6 мм.

Длина провариваемого участка 50 мм.

Шаг 100 мм.

 

Шов соединения внахлестку без скоса кромок, односторонний, выполняемый дуговой полуавтоматической сваркой в защитных газах плавящимся электродом.

Шов по незамкнутой линии.

Катет шва 5 мм.

 

Табл. 2.3 Пример условного обозначения нестандартного шва сварного соединения

Характеристика шва

Условное изображение и обозначение шва на чертеже

Шов соединения без скоса кромок, односторонний, выполненный ручной дуговой сваркой при монтаже изделия

Примечание. В технических требованиях делают следующее указание:”Сварка ручная дуговая”.

Обозначения сварных швов металлоконструкций на чертежах выполняется по СН 460-74. Условные изображения сварных швов на чертежах для металлоконструкций показаны на Табл. 2.4. Обозначения швов сварных соединений по указанному документу в этом случае допускается использовать без выносных линий, помещая их непосредственно над или под изображением соответствующего сварного шва вне зависимости от того, является ли сварной шов видимым или невидимым.

Табл. 2.4 Условные изображения швов сварных соединений, применяемых при проектировании строительных металлоконструкций.

Наименование

Изображение шва

Размер изображения, мм

заводского

монтажного

Шов стыкового сварного соединения, сплошной:

с видимой стороны

с невидимой стороны

То же, прерывистый:

с видимой стороны

с невидимой стороны

Шов таврового углового или нахлесточного соединения, сплошной:

с видимой стороны

с невидимой стороны

То же, прерывистый:

с видимой стороны

с невидимой стороны

Нахлесточное точечное соединение, точки выполнены контактной сваркой

Нахлесточное точечное соединение, точки выполнены электродуговой сваркой

Примечания:

  1.  Здесь Kf – катет углового шва; l - длина участка прерывистого шва; a – расстояние между участками прерывистого шва.
  2.  Изображения сварных швов при необходимости дополняют разрезами, показывающими геометрические размеры разделки и выполненного шва.
  3.  Материалы сварных конструкций

Правильность выбора материала, является одним из основных вопросов при проектировании сварных конструкций, поскольку материал определяет работоспособность изделия, технологию его изготовления, стоимость изделия.

Исходными данными для выбора материала являются условия эксплуатации, кроме того, материал должен обладать требуемыми для изготовления технологическими свойствами.

При выборе материала учитывают комплекс условий: первоначальные затраты на материал, технологическую обработку (в т.ч. сварку) возможность последующего ремонта и т.д.

К материалам, используемым при изготовлении сварных конструкций, можно отнести стали, цветные сплавы, а также пластмассы, композитные материалы. Но основное место при проектировании и производстве сварных конструкций занимают конструкционные стали и цветные сплавы.

  1.  Виды разрушающих испытаний. Механические характеристики сталей и сплавов
    1.  Испытания на растяжение

Испытание на растяжение является наиболее распространенным методом определения характера поведения материала при статических нагрузках и оценки характеристик механических свойств материалов, т.е. характеристик упругости, прочности, пластичности, статической вязкости.

  •  Упругостью называется способность материала восстанавливать первоначальные размеры и форму детали после снятия внешних нагрузок.
  •  Пластичностью называется способность материала накапливать до разрушения пластические (остаточные) деформации.
  •  Статической вязкостью называется способность материала поглощать энергию, идущую на деформирование образца.

Количественными оценками свойств материала являются следующие характеристики:

  •  Предел пропорциональности σПЦ - наибольшее напряжение, до которого деформации прямо пропорциональны напряжениям.
  •  Предел упругости σУ - напряжение, до которого материал не получает остаточных деформаций.
  •  Предел текучести σТ - напряжение, при котором деформации растут без заметного увеличения нагрузки.
  •  Временное сопротивление σВ (предел прочности) - максимальное напряжение (определенное без учета изменения площади поперечного сечения в процессе нагрузки) выдерживаемое материалом при растяжении.

Характеристики механических свойств материалов получают путем испытания образцов стандартной формы и размеров.

Рис. 3.1 Образец для испытаний на растяжение ОМ

Рис. 3.2Диаграмма растяжения для стали

При испытании образца (Рис. 3.1) на испытательной машине получают первичную диаграмму растяжения в координатах: нагрузка P- удлинение образца l (Рис. 3.2). Эта диаграмма зависит от размеров образца. Для того, чтобы диаграммы не зависели от размеров испытуемых образцов и были сравнимы для различных материалов, первичную диаграмму перестраивают. При этом, удлинения l делят на начальную длину образца l0 (ε=l/l0), нагрузки на начальную площадь поперечного сечения F0 (σ=P/F0). Координаты "ε-σ" используют для построения условной диаграммы растяжения, которая подобна первичной, так как при ее построении абсциссы и ординаты первичной диаграммы делятся на постоянные величины.

Рассмотрим более детально процесс растяжения стального образца. Начальный участок диаграммы 0-1 является прямолинейным и дает пропорциональную зависимость , где . Участок пропорциональности заканчивается напряжением

называемым пределом пропорциональности. Участок 0-1-2 составляет область упругих деформаций. При разгрузке из точки 2 деформации исчезают полностью. Участок заканчивается напряжением

,

которое называется пределом упругости. Практически предел упругости совпадает с пределом пропорциональности. Участок 2-3 составляет физическую площадку текучести: деформация продолжается при постоянном напряжении

,

которое называется пределом текучести.

Рис. 3.3Машинная и истинная диаграммы растяжения для стали.

Участок 3-4 характеризует упрочнение материала:

увеличение деформации вызывает непропорциональное увеличение напряжения. Наибольшее напряжение

на условной диаграмме называется временным сопротивлением (пределом прочности) материала. До точки 4 материал по длине образца растягивается равномерно. При достижении σВ деформация образца локализуется в одном месте, образуется шейка. Вследствие местного уменьшения площади сечения необходима меньшая нагрузка для продолжения деформации, чем объясняется снижение напряжения на участке 4-5.

В точке 5 происходит разрушение. Условное разрушающее напряжение

не отражает истинной величины действующих в материале напряжений в зоне разрушения (в месте образования шейки).

Условные диаграммы не учитывают изменения площади сечения и длины образца. Если учесть эти изменения, то можно построить истинную диаграмму деформирования в координатах " ". Напряжение называется истинным сопротивлением разрыву.

Для большинства материалов имеет место закон упругой разгрузки и повторной нагрузки. При разгрузке из точки A на диаграмме растяжения получим прямую линию, параллельную начальному участку (Рис. 3.3). Точка В делит деформацию εС на εУПР, исчезающую при разгрузке, и εПЛ, остающуюся в образце. При повторном нагружении на диаграмме получается линия, почти совпадающая с линией разгрузки. После достижения точки А зависимость ε-σ изобразится в виде кривой А-4-5 так, как если бы промежуточной разгрузки не проводилось.

Линейный участок АВ при повторной нагрузке больше начального участка 0-1, следовательно, предел пропорциональности повышается. Однако при этом уменьшается величина остаточной деформации. Такое повышение прочности и уменьшение пластичности материала вследствие предварительной нагрузки выше предела текучести называется наклепом материала.

Существуют материалы, у которых отсутствует физическая площадка текучести (Рис. 3.4). Для них определяется условный предел текучести, т.е. напряжение, при котором остаточная деформация составляет заранее заданную малую величину. При этом на оси абсцисс откладывают отрезок, равный 0.002-0.005 от первоначальной длины образца, и проводят линию, параллельную прямой нагружения. Ордината точки пересечения этой линии с диаграммой растяжения соответствует величине условного предела текучести σ0.2 (или σ0.5).

При испытании хрупких материалов, например чугуна (Рис. 3.5), шейка на образце не образуется. Разрушение происходит при небольших пластических деформациях. Хрупкие материалы менее строго подчиняются закону Гука, начальный участок диаграммы деформирования слегка искривлен.

Рис. 3.4 Диаграмма растяжения для материала не имеющего площадки текучести

Рис. 3.5 Диаграмма растяжения для хрупкого материала

Второй группой характеристик, получаемых при испытаниях на растяжение, являются характеристики пластичности, по которым можно оценить способность материала накапливать пластические деформации.

Характеристиками пластичности являются: относительное остаточное удлинение образца при разрыве

где lК - длина рабочей части образца к моменту разрыва; l0 - начальная длина рабочей части образца.

и относительное остаточное сужение площади поперечного сечения образца при разрыве

где F0 - начальная площадь сечения; FK- площадь поперечного сечения образца в шейке к моменту разрыва.

Формы и размеры образцов стандартизированы. Так как относительное остаточное удлинение образца при разрыве зависит от типа испытанного образца, то его размеры подбираются в соответствии с соотношениями

=11.3 или =5.65.

В соответствии с указанными соотношениями, длина круглых стандартных образцов для испытания на растяжения будет соответственно в 10 и в 5 раз больше их диаметра. Поэтому определяемые при испытаниях образцов с различной длиной значения относительного остаточного удлинения принято обозначать и .

Площадь, заключенная под первичной диаграммой растяжения (рис.2), численно равна работе, затраченной на разрушение образца. При этом площадь 5-6-7 численно равна работе упругого деформирования, а площадь 0-1-2-3-4-5-7 - работе пластического деформирования образца.

Статическая вязкость материала характеризуется работой, затраченной на пластическое деформирование до разрушение единицы объема материала:

,

где a- удельная работа; A- работа, затраченная на пластическое деформирование до разрушения образца; V0- начальный объем образца.

Для упрощения расчетов, работу, затраченную на пластическое деформирование, можно определить как площадь прямоугольника с основанием и высотой (Рис. 3.2).

Разницу между площадью этого прямоугольника и площадью под кривой растяжения учитывают поправочным коэффициентом η, называемым коэффициентом полноты диаграммы

.

  1.  Измерение твердости

Твердость – это свойство материала оказывать сопротивление контактной деформации или хрупкому разрушению при внедрении индентора в его поверхность. Испытания на твердость – самый доступный и распространенный вид механических испытаний. Наибольшее применение в технике получили статические методы испытания на твердость при вдавливании индентора: метод Бринелля, метод Виккерса и метод Роквелла.

При испытании на твердость по методу Бринелля (ГОСТ 9012-59) в поверхность материала вдавливается твердосплавный шарик диаметром D под действием нагрузки Р и после снятия нагрузки измеряется диаметр отпечатка d (рис.2.3,а). Число твердости по Бринеллю (НВ) подсчитывается как отношение нагрузки Р к площади поверхности сферического отпечатка М:

( 3.9)

При D=10 мм, Р= 29400 Н (Р/D2 =294 МПа) и времени выдержки под нагрузкой 10 с твердость по Бринеллю обозначается символом НВ с указанием числа твердости. При этом размерность (МПа) не ставиться, например 200НВ. При использовании шариков других диаметров (1, 2, 2,5 и 5 мм) изменяется нагрузка вдавливания, а символ твердости НВ дополняется тремя индексами. Например 180НВ2,5/187,5/30 обозначает что при D= 2,5 мм, Р=187,5 кгс (1839Н) и времени выдержки под нагрузкой 30 с число твердости по Бринеллю равно 180.

Метод Бринелля не рекомендуется применять для материалов с твердостью более 450 НВ, так как стальной шарик может заметно деформироваться, что внесет погрешность в результаты испытаний.

При испытании на твердость по методу Виккерса (ГОСТ 2999-75) в поверхность материала вдавливается алмазная четырехгранная пирамида с углом при вершине α=136º (рис.2.3, б). После снятия нагрузки вдавливания измеряется диагональ отпечатка d1 . Число твердости по Виккерсу HV подсчитывается как отношение нагрузки Р к площади поверхности пирамидального отпечатка М:

=

( 3.11)

Рис.2.3. Схема испытания на твердость

Число твердости по Виккерсу обозначается символом HV с указанием нагрузки Р и времени выдержки под нагрузкой, причем размерность числа твердости (МПа) не ставиться. Продолжительность выдержки индентора под нагрузкой принимается для сталей 10 – 15 с, а для цветных металлов – 30 с. Например 450HV10/15 означает , что число твердости по Виккерсу 450 получено при Р=10 кгс (98,1Н), приложенной к алмазной пирамиде в течении 15 с.

Преимущество метода Виккерса по сравнению с методом Бринелля заключается в том, что методом Виккерса можно испытывать материалы более высокой твердости из-за применения алмазной пирамиды.

При испытании на твердость по методу Роквелла (ГОСТ 9013-59) в поверхность материала вдавливается алмазный конус с углом при вершине 120º или стальной шарик диаметром 1,588 мм . Однако, согласно этому методу, за условную меру твердости принимается глубина отпечатка. Схема испытания по методу Роквелла показана на (рис.2.3, в.)

Вначале прикладывается предварительная нагрузка Р0, под действием которой индентор вдавливается на глубину h0. Затем прикладывается основная нагрузка Р1 под действием которой индентор вдавливается на глубину h1. После этого снимают нагрузку Р1, но оставляют предварительную нагрузку Р0. При этом под действием упругой деформации индентор поднимается вверх, но не достигает уровня h0. Разность (h-h0) зависит от твердости материала; чем тверже материал, тем меньше эта разность. Глубина отпечатка измеряется индикатором часового типа с ценой деления 0,002 мм. При испытании мягких металлов методом Роквелла в качестве индентора применяется стальной шарик. Последовательность операций такая же, как при испытании алмазным конусом. Число твердости, определённое методом Роквелла, обозначается HR. Однако в зависимости от формы индентора и значений нагрузок вдавливания к этому символу добавляется буква А,С, или В, обозначающая соответствующую шкалу измерений. Шкала В используется для измерения наименее твердых металлов, индентором является стальной шарик. По шкале А измеряют твердость особо твердых материалов и в этом случае во избежание повреждений алмазного конуса рекомендуется меньшая нагрузка вдавливания.

Числа твердости по Роквеллу подсчитываются по формулам

HRA(HRC) = 100 –[(h-h0)/0,002]

( 3.12)

HRB = 130 –[(h-h0)/0,002]

( 3.13)

где 100 и 130 – предельно заданное число делений индикатора часового типа с ценой деления 0,002 мм. Например 50 HRC означает, что твердость, определенная методом Роквелла по шкале С при вдавливании алмазного конуса, равна 50.

Преимущество метода Роквелла по сравнению с методом Бринелля и Виккерса заключается в том, что значения твердости по методу Роквелла фиксируются непосредственно стрелкой индикатора, при этом отпадает необходимость в оптическом измерении размеров отпечатка.

Для измерения твердости тонких слоев материала и даже их отдельных структурных составляющих применяют метод микротвердости (ГОСТ 9450- 76).

Этот метод по существу не отличается от метода Виккерса, однако при этом используют малые нагрузки вдавливания; 0,049(0,005); 0,098(0,01); 0,196(0,02); 0,49(0,05); 0,98(0,1); 1,962(0,2); 4,9(0,5) Н (кгс).

  1.  Испытания на ударный изгиб

Для проверки способности металла сопротивляться ударным нагрузкам применяют особый вид испытний ударным изгибом - определение ударной вязкости надрезанных образцов. Эти испытания проодят на маятниковых копрах. Испытание должно проводиться при ударе маятника со стороны, противоположной концентратору, в плоскости его симметрии.

На Рис. 3.6 показан маятниковый копер и направление удара бойка маятника. Разность высот положения маятника ло и после удара позволяет вычислить работу А, израсходлванную на разрушение образца.

Рис. 3.6 Схема испытания на ударный изгиб.

При испытаниях используются два типа образцов (Рис. 3.7):

  •  Образец с U образным надрезом (образец Менаже);
  •  Образец с V образным надрезом (образец Шарпи).

Рис. 3.7 Образцы для испытаний на ударный изгиб

Ударной вязкостью (КСU или КСV в зааисимости от формы надреза) Дж/см2 (кгс×м/см2) называется величина работы разрушения образца, тнесенная к плоскости его поперечного сечения в месте надреза. Ударную вязкость вычисляют по формуле:

,

( 3.16)

где А - работа удара, Дж (кгс×м);

F - начальная площадь поперечного сечения образца в месте концентратора, см2,

Хотя данные об ударной вязкости не могут быть использованы при расчете на прочность, но они позволяют оценить особое качество металла – его склонность к хрупкости при динамических нагрузках в условиях сложного напряженного состояния в области надреза, и решить вопрос о применимости того или иного материала для данных условий работы.

Учитывая, что большинство важнейших конструкционных материалов склонно к охрупыванию при понижении температуры работы – явление хладноломкости – испытания образцов материала на ударную вязкость рекомендуется проводить при разных температурах.

  1.  Правила нанесения показателей свойств материалов.

На чертежах изделий, подвергаемых термической и другим видам обработки, указывают показатели свойств материалов, полученных в результате обработки, например: твердость (HRCэ, HRB, HRA, HB, HV), предел прочности (σв), предел упругости (σу), ударная вязкость (ак) и т. п.

Глубину обработки обозначают буквой h.

Величины глубины обработки и твердости материалов на чертежах указывают предельными значениями: «от…до», например: h 0,7…0,9; 40…46 HRCэ

В технически обоснованных случаях допускается указывать номинальные значения этих величин с предельными отклонениям, например, h 0,8±0,1; (43±3) HRCэ.

Допускается указывать значения показателей свойств материалов со знаками ≥ или ≤, например σв≥1500 кгс/см2, твердость ≥780 HV т.п.

Обозначение твердости HRCэ следует указывать только во вновь разрабатываемой документации. При использовании ранее разработанной документации для перевода значения твердости HRC в HRCэ следует руководствоваться ГОСТ 8. 064 - 79

Допускается на чертежах указывать виды обработки, результаты которых не подвергаются контролю, например, отжиг, а также виды обработки, если они являются единственными гарантирующими требуемые свойства материала и долговечность изделия. В этих случаях наименование обработки указывают словами или условными сокращениями, принятыми в научно-технической литературе (Рис. 3.8).

Рис. 3.8 Указание на чертежах вида обработки

При необходимости в зоне требуемой твердости указывают место испытания твердости (Рис. 3.9)

Если все изделие подвергают одному виду обработки, то в технических требованиях делают запись: «40..45 HRCэ» или «Цементировать h 0,7…0,9 мм, 58…62 HRCэ » или «Отжечь» и т.п.

Рис. 3.9 Указание на чертежах места испытания

Рис. 3.10 Указание поверхности, отличающейся по твердости от остальных поверхностей детали

Рис. 3.11 Указание поверхности, отличающейся по твердости от остальных поверхностей детали

Если большую часть поверхности изделия подвергают одному виду обработки, а остальные поверхности - другому виду обработки или предохраняют от нее, то в технических требованиях делают запись по типу: «40…45 HRCэ, кроме поверхности А» (Рис. 3.10) или «30..35 HRCэ, кроме места, обозначенного особо» (Рис. 3.11). Если обработке подвергают отдельные участки изделия, то показатели свойств материалов и, при необходимости, способ получения этих свойств указывают на полках линий-выносок, а участки изделия, которые должны быть обработаны, отмечают штрих пунктирной утолщенной линией, проводимой на расстоянии 0,8…1 мм от них, с указанием размеров, определяющих поверхности (Рис. 3.12, Рис. 3.13)

Рис. 3.12 Обозначение показателей свойств материала отдельных участков изделия

Рис. 3.13 Обозначение показателей свойств материала отдельных участков изделия

Размеры, определяющие поверхности, подвергаемые обработке, допускается не проставлять, если они ясны из данных чертежа (Рис. 3.14, Рис. 3.15).

Рис. 3.14 Обозначение поверхности, подвергаемой обработке

Рис. 3.15 Обозначение поверхности, подвергаемой обработке

Поверхности изделия, подвергаемые обработке, отмечают штрих-пунктирной утолщенной линией на той проекции, на которой они ясно определены (Рис. 3.16).

Допускается отмечать эти поверхности и на других проекциях, при этом надписи с показателями свойств материала, относящимися к одной и той же поверхности, наносят один раз (Рис. 3.17).

Рис. 3.16 Обозначение поверхности, подвергаемой обработке

Рис. 3.17 Обозначение поверхности, подвергаемой обработке

При одинаковой обработке симметричных участков или поверхностей изделия отмечают штрих пунктирной утолщенной линией все поверхности, подвергаемые обработке, а показатели свойств материала указывают один раз (Рис. 3.18).

Рис. 3.18 Обозначение симметричных поверхностей, подвергаемой обработке

При наличии на изделии участков поверхностей с различными требованиями к свойствам материала эти требования указывают отдельно для каждого участка (Рис. 3.17).

Если надписи с указанием свойств материала и размеры, определяющие поверхности, подвергаемые обработке, затрудняют чтение чертежа, то допускается приводить их на дополнительном упрощенном изображении.

При обработке поверхностей или участков изделия, определяемых термином или техническим понятием (например, рабочая часть или хвостовик режущего инструмента, поверхности зубьев, зубчатого колеса или поверхности, обозначенные буквами, и т.п.), допускается (если это не приведет к неоднозначному пониманию чертежа) не отмечать их штрих пунктирной утолщенной линией, а в технических требованиях делать запись по типу: «хвостовик h 0,8…1 мм; 48..52 HRCэ». «Поверхность А-45…50 HRCэ».

  1.  Стали. Классификация. Маркировка

По содержанию легирующих элементов конструкционные стали делят на:

  •  Углеродистые стали. Содержат легирующие элементы, кроме углерода в небольших количествах, как примеси.
  •  Низколегированные стали. Легированны одним или несколькими элементами, содержание каждого из них не превышает 2%. Суммарное содержание легирующих элементов не превышает 5%.;
  •  Среднелегированные стали. Суммарное содержание легирующих элементов до 10 %.
  •  Высоколегированные стали. Суммарное содержание легирующих элементов превышает 10 %. Содержание железа –не менее 45 %.

Поскольку важнейшим легирующим элементом, определяющим механические и технологические характеристики (свариваемость) является углерод, стали подразделяют по содержанию углерода на:

  •  малоуглеродистые (до 0,25 %);
  •  среднеуглеродистые (0,25 – 0,45 %);
  •  высокоуглеродистые ( свыше 0,45 %).

Наибольшее распространение при производстве сварных конструкций получили малоуглеродистые и низколегированные стали.

Маркировка.

Маркировка качественных сталей включает слово «Сталь» и цифры, указывающие на содержание углерода в сотых долях процента. В легированных сталях затем идут буквы и цифры, указывающие наличие тех или иных химических элементов и их содержание в процентах.

Легирующие добавки имеют следующие условные обозначения: марганец – Г, кремний – С, никель – Н, хром – Х, молибден – М, ванадий – Ф, медь – Д, титан – Т, вольфрам – В, бор – Р, азот – А (если в середине обозначения), алюминий – Ю (если в середине обозначения).

Высококачественные стали маркируются буквой «А» в конце обозначения стали.

Строительные стали поставляются по ГОСТ 27772. Поскольку основным критерием при выборе стали для строительных конструкций является прочность строительные стали классифицируются не по химическому составу, а в зависимости от прочностных свойств. Маркировка стали начинается с буквы «С», затем идут цифры, характеризующие предел текучести стали в МПа.

  1.  Углеродистые стали

По степени раскисления стали делят на:

  •  кипящие «кп», плавка стали проводится без достаточного количества раскислителей;
  •  спокойные «сп», стали, раскисленные добавками марганца, кремния и алюминия;
  •  полуспокойные «пс», стали, занимающие промежуточное положение между кипящими и спокойными.

Спокойные и полуспокойные стали по механическим свойствам различаются незначительно. Кипящие стали обладают большей хладноломкостью, неравномерностью распределения примесей, склонностью к горячим трещинам.

Кроме добавок раскислителей - кремния и марганца, в сталях содержатся вредные примеси – сера и фосфор, содержание которых в стали ограничивают

По содержанию серы и фосфора, неметаллических включений различают углеродистые стали:

  •  обыкновенного качества;
  •  качественные;
  •  высококачестенные.

Сталь получают плавкой чугуна со стальным ломом, легирующими элементами, флюсами в конверторах, мартеновских и электрических печах. Высшие сорта сталей получают электрошлаковым, вакуумным дуговым, электронно-лучевым, плазменно-дуговым переплавом.

Стали обыкновенного качества поставляются по без термообработки в горячекатанном состоянии. Маркируются стали обыкновенного качества сокращением «Ст.» и цифрой 0…6, цифра ничего не говорит о химическом составе стали, чем выше номер, тем выше прочность. Кроме того, в маркировке стали обыкновенного качества могут присутствовать индексы указывающие степень раскисления.

Качественные стали поставляются по ГОСТ 1050, отдельным стандартам и техническим условиям (ГОСТ 5520 – сталь для котлостроения, ГОСТ 5521 сталь для судостроения, ГОСТ 6713 сталь для мостостроения), механические свойства сталей установлены в зависимости от вида термообработки.

Механические характеристики углеродистых сталей:

от 0,1% углерода: МПа;

МПа;

.

от 0,1-0,25%:  МПа;

МПа;

.

  1.  Низколегированные стали

К сталям данной группы относятся ещё такие марки сталей, как 14Г, 19Г, 09Г2, 14Г2, 12ГС, 17ГС, 09Г2С, 10Г2С1, 10ХСНД, 15ХСНД и др.

В зависимости от легирования стали рассматриваемого типа подразделяют на марганцовистые, кремнемарганцовистые, хромокремнемарганцовистые и др.

Стали предназначаемые для сварных конструкций, поставляют в основном в горячекатаном или нормализованном состоянии. Ряд сталей применяют в термоулучшенном состоянии (после закалки и отпуска), что дает возможность повысить их прочность и стойкость против хрупкого разрушения (ударная вязкость в 1,5—2 раза выше чем у низкоуглеродистых).

Низколегированные стали поставляют по ГОСТ 5058 и специальным техническим условиям. Механические свойства наиболее широко применяемых в промышленности сталей обычно находятся в пределах: МПа; МПа; при -40° С KCU>30. Стали, поставляемые в термоулучшенном состоянии, имеют  МПа;  МПа и при -70° С KCU>30.

По содержанию серы и фосфора низколегированные низкоуглеродистые конструкционные стали могут быть отнесены к качественным сталям. В последние годы находят применение стали с пониженным содержанием серы, например рафинированные в ковше жидким синтетическим шлаком.

Легирующие элементы оказывают существенное влияние на показатели свариваемости сталей. Увеличение содержания элементов, повышающих закаливаемость, сопровождается снижением сопротивления сварных соединений образованию холодных трещин. Элементы, упрочняющие твердый раствор, способствуют, как правило, снижению ударной вязкости металла в околошовном участке ЗТВ сварных соединений.

Применение сварных конструкций и изделий из низколегированных низкоуглеродистых конструкционных сталей постоянно возрастает, поскольку их применение взамен низкоуглеродистых позволяет в ряде случаев снизить металлоемкость конструкций на 20-50%. Они широко используются в строительстве трубопроводов, конструкций газонефтехимических производств, судов, мостов и других сооружений, эксплуатируемых в температурном интервале –70…+475 С

  1.  Цветные металлы

В некоторых отраслях промышленности наряду с применением стали получили распространение цветные сплавы: в авиации, судостроении, строительстве. Сплавы на основе алюминия и титана обладают значительно меньшей плотностью по сравнению со сталями, хорошо сохраняют свои свойства при работе в условиях низких температурах. Они обладают более высокой коррозионной стойкостью и обеспечивают экономию массы по сравнению с рядом других применяемых материалов. С другой стороны, цветные сплавы имеют в несколько раз меньший, чем сталь, модуль упругости, что снижает устойчивость элементов конструкций, увеличивает их деформируемость.

По сравнению со сталями обыкновенного качества цветные сплавы обладают повышенной чувствительностью к концентраторам напряжений. Это повышает требования к качеству обработки изделий и особенно к качеству сварочных работ.

  1.  Алюминевые сплавы

По масштабам применения в народном хозяйстве алюминий занимает среди металлов второе место после железа.

Механические свойства отожженного алюминия высокой чистоты:  МПа; МПа;

Механические свойства отожженного алюминия технической чистоты:  МПа; МПа;

Холодная пластическая деформация повышает предел прочности технического алюминия до 150 МПа, но относительное удлинение снижается до 6 %.

Модуль упругости алюминия 71000 МПа.

Втрое меньший чем у стали модуль уругости обуславливает малую жесткость конструкций изготовленных из алюминия и его сплавов. Прочность чистого алюминия также низка, однако она может быть существенно увеличена путем легирования.

Алюминиевые сплавы представляют собой двойные, тройные и более сложные системы с различной растворимостью компонентов в твердом состоянии. Для упрощения маркировки в обозначении некоторых сплавов, кроме алюминия, с помощью букв отражается еще один элемент (основной компонент), а цифрами - его процентное содержание;

  •  АМц - алюминиево-марганцевый сплав.
  •  АМг - алюминиево-магниевый.
  •  АВ - алюминиево-кремниевый (авиаль).
  •  Д - дуралюмин.
  •  В - высокопрочный сплав.

В маркировке сплавов после цифр могут быть еще буквы, которые обозначают состояние поставки проката или листа, то есть вид механической или термической обработки металла. Буквенные обозначения механической и термической обработки алюминиевых сплавов (состояние поставки):

  •  П - полунагартованные.
  •  Н - нагартованные.
  •  М - отожженные.
  •  Т - закаленные и естественно состаренные.
  •  TI - закаленные и искусственно состаренные.

Алюминиевые сплавы различают двух видов: литейные, которые применяются в виде отливок, в основном, в машиностроении, и так называемые деформируемые, из которых путем пластических деформаций изготовляются различные профили и листы, применяемые в строительстве и в других отраслях народного хозяйства.

Деформируемые сплавы разделяют на две группы: термически необрабатываемые и термически обрабатываемые.

Общими свойствами группы термически необрабатываемых сплавов являются: невысокая прочность и хорошая свариваемость. Для повышения прочности листов, изготовляемых из сплавов этой группы, применяется полунагартовка.

Термически неупрочняемые алюминиевые сплавы:

а) Алюминиево-марганцевый сплав АМц.

Содержит 1-1,6%. марганца. Сплав имеет низкий предел прочности - 110-170 МПа. Сваривается. Как правило, используется для ограждающих конструкций.

б) Алюминиево-магниевый сплав АМг-6Т.

По стойкости против коррозии алюминиево-магниевые сплавы занимают первое место после технически чистого алюминия. Хорошо свариваются. Применяются для листовых и для сварных стержневых конструкций.

Наибольшее распространение из алюминиево-магниевых сплавов получил в строительстве сплав АМг-6Т, который содержит около 6% магния и до 0,2% титана (что в марке сплава обозначено буквой Т).

Предел прочности АМг-6Т -320 МПа и относительное удлинение- 15%.

Наиболее качественные сварные соединения алюминия и его сплавов получают при контактной сварке и электродуговой сварке в среде аргона.

Одно из наиболее ценных качеств алюминиевых сплавов - это их относительно малый собственный вес при высокой прочности. Объемный вес сплавов АМг, АМц, АВ-2700 кг/м3, дуралюмина - 2800 кг/м3, то есть вес сплавов почти в три раза (в 2,7-2,9 раза) меньше веса сталей.

В качестве характеристики прочности материала с учетом собственного веса принято оценивать по такому показателю как удельная прочность. Удельная прочность предсталяет собой обношение расчетного сопротивления к объемному весу. Физически, это отношение показывает высоту столба постоянного сечения, в основании которого напряжения от собственного веса равны расчетному сопротивлению. Удельная прочность высокопрочных алюминиевых сталей в несколько раз выше чем у обыкновенных сталей.

Более широкому применению алюминиевых сплавов при изготовлении сварных конструкций препятствуют малая жесткость сплавов алюминия, достаточно сложная технология сварки и разупрочнение сварных соединении нагартованного металла.

  1.  Титановые сплавы

Сварные конструкции и изделия из титана и его сплавов находят применение не только в военной промышленности и новых отраслях техники, но во многих областях машиностроения и строительства.

В связи с более высокой удельной прочностью и жесткостью титан и его сплавы имеют неоспоримые преимущества перед алюминиевыми и магниевыми сплавами, особенно для сварных конструкций, работающих при 150—200°С, т. е. у верхнего предела рабочего интервала температур для алюминиевых и магниевых сплавов. В тех случаях, когда сопротивление коррозии играет важную роль, сплавы металлов алюминия и магния выгодно заменять титаном и его сплавами также и в сварных конструкциях, работающих при комнатной температуре. Сочетание высокой удельной прочности с относительно высокой теплоустойчивостью позволит в дальнейшем еще более широко использовать титан и его сплавы вместо аустенитных сталей в сварных конструкциях, предназначенных для эксплуатации при температурах до 500°.

Первое применение сварные конструкции из титана нашли в оборонной технике: авиации, ракетостроении, судостроении, танкостроении, стрелковом и артиллерийском вооружении. В настоящее время титан и его сплавы начинают все более широко использоваться также и в других отраслях, например, в гражданской авиации, атомном, энергетическом, химическом, нефтяном и транспортном машиностроении.

Технический титан имеет  МПа; МПа; , , E = 140000 МПа.

Легирование существенно меняет механические характеристики титана. При этом, меняется и фазовый состав сплавов.

По структуре различают однофазные и двухфазные титановые сплавы – α, α+β, β. Однофазные упрочняются механически, двухфазные упрочняются термообработкой.

α: ВТ1-0, ОТ4, ВТ5.

α+β: ВТ4, ВТ6, ВТ14, ВТ22, ВТ8

β: ВТ15, ТС-6.

Β сплавы отдичаются низкой свариваемостью, поэтому в сварных конструкциях используются в основном α и α+β сплавы.

Табл. 3.1 Механические характеристики некоторых титановых сплавов

Марка сплава

Термообработка

Стандартные механические свойства

σв

δ

ψ

KCU,

МПа

%

Дж/см2

ВТ6

Отжиг

Закалка и старение

950-1100

1150

10-13

8

25-60 30

30

25

ВТ22

Отжиг

Закалка и старение

1100-1250

1400-1550

8

5

-

-

-

-

ВТ8

Отжиг

Закалка

и старение

1050-1250

1200

10-18

6

32-55

20

30-50

-

Титановые сплавы обладают высокой коррозионной стойкостью, удельной прочностью.

Однако титановые сплавы имеют склонность к замедленному разрушению, без тщательной подготовки свариваемых кромок и качественной защиты сварные конструкции разрушаются и без нагрузки.

  1.  Сварочные материалы.

Стальные сварочные проволоки поставляются по ГОСТ 2246, алюминиевые – по ГОСТ 7871, для наплавки – по ГОСТ 10543.

Маркировка стальных проволок начинается с сокращения «св.» - для сварочных проволок, и «нп.» - для наплавочных. В остальном маркировка проволок совпадает с маркировкой сталей.

Электроды поставляются по ГОСТ 9467, 10052 и техническим условиям. Полная маркировка электродов в соответствии с ГОСТ 9466 приведена на Рис. 3.19.

Рис. 3.19 Полная маркировка электродов для ручной дуговой сварки.

1-тип; 2- марка; 3-диаметр, мм; 4-обозначение назначения электродов; 5-обозначение толщины покрытия; 6-группа индексов; указывающих характеристики наплавленного металла и металла шва по ГОСТ 9467-75, ГОСТ 10051-75 или ГОСТ 10052-75; 7-обозначение вида покрытия; 8-обозначение допустимых пространственных положений сварки или наплавки; 9-обозначение рода применяемого при сварке или наплавке тока, полярности постоянного тока и номинального напряжения холостого хода источника питания сварочной дуги переменного тока частотой 50 Гц; 10-обозначение настоящего стандарта; 11-обозначение стандарта на типы электродов

Согласно ГОСТ 9467-75 электроды изготавливатются следующих типов: Э38, Э42, Э46 и Э50-для сварки углеродистых и низколегированных конструкционных сталей с временным сопротивлением разрыву до 50 кгс/мм2;

Э42А, Э46А и Э50А-для сварки углеродистых и низколегированных конструкционных сталей с временным сопротивлением разрыву до 50 кгс/мм2, когда к металлу сварных швов предъявляют повышенные требования по пластичности и ударной вязкости;

Э55 и Э60-для сварки углеродистых и низколегированных конструкционных сталей с временным сопротивлением разрыву свыше 50 до 60 кгс/мм2;

Э70, Э85, Э100, Э.125, Э150-для сварки легированных конструкционных сталей повышенной и высокой прочности с временным сопротивлением разрыву свыше 60 кгс/мм2.

Электроды для сварки специальных сталей изготавливаются с использованием проволок содержащих легирующие элементы и в обозначении типа Указывается марка проволоки: Э-09М, Э-09МХ, Э-09Х1М, Э-10Х17Т, Э-08Х19Н10Г2МБ и т.д.

  1.  Строение сварного соединения. Влияние неоднородности свойств на прочность сварной конструкции

Сварным соединением как конструктивным элементом называют участок конструкции, в котором элементы отдельные ее элементы соединены с помощью сварки. В сварное соединения входят сварной шов, прилегающая к нему зона основного металла со структурными другими изменениями в результате термического действия сварки (зона термического влияния) и примыкающие к ней участки основного металла.

В той или иной мере для всех сварных соединений характерно различие механических свойств металла в разных участках, соизмеримых с размерами соединения, главным образом с толщиной свариваемых элементов s, называемое механической неоднородностью.

Сварные соединения являются несущими элементами конструкций, в которых неоднородность свойств может быть весьма значительной. При установившемся режиме сварки ширина зон и их механические свойства мало меняются по длине сварного соединения. Обычно рассматривают неоднородность свойств и чередование зон в поперечном сечении сварного соединения.

Сварные соединения, выполненные сваркой плавлением, можно разделить на несколько зон, отличающихся макро- и микроструктурой, химическим составом, механическими свойствами и другими признаками: сварной шов, зону оглавления, зону термического влияния и основной металл (Рис. 4.1). Характерные признаки зон связаны с фазовыми и структурными превращениями, которые претерпевают при сварке металл в каждой зоне.

Рис. 4.1 Характерные зоны сварных соединений

1 - шов; 2 - зона термического влияния;3 - основной металл; 4 - околошовный участок зоны термического влияния.; 5 - зона сплавления; ТЛ, ТС, и ТП - температуры ликвидуса, солидуса и начала фазовых и структурных превращений

Сварной шов характеризуется литой макроструктурой металла.

Зона термического влияния (ЗТВ) — участок основного металла, примыкающий к сварному шву, в пределах которого вследствие теплового воздействия сварочного источника нагрева протекают фазовые и структурные превращения в твердом металле. В результате этого ЗТВ имеет отличные от основного металла величину зерна и вторичную микроструктуру. Часто выделяют околошовный участок ЗТВ или околошовную зону (ОШЗ). Она располагается непосредственно у сварного шва и включает несколько рядов крупных зерен. Металл шва, имеющий литую макроструктуру, и ЗТВ в основном металле, имеющая макроструктуру проката или рекристаллизованную макроструктуру литой или кованой заготовки, разделяются друг от друга поверхностью сплавления.

Зона сплавления (ЗС) — это зона сварного соединения, где происходит сплавление наплавленного и основного металла. В нее входит узкий участок шва, расположенный у линии сплавления, а также оплавленный участок ОШЗ.

Основной металл располагается, за пределами ЗТВ и не претерпевает изменений при сварке.

Сварное стыковое соединение, как было сказано выше, в поперечном сечении имеет несколько участков, которые могут существенно различаться между собой по механическим свойствам. Обычно рассматривают неоднородность свойств и чередование зон в поперечном сечении сварного соединения.

Зоны, где металл обладает пониженным пределом текучести по отношению к пределу текучести соседнего металла, называют мягкими прослойками.

Типичным примером образования механической неоднородности и прослоек является сварка термически обработанных сталей. Будем для простоты рассматривать сварку без присадочного металла. Тогда шов и околошовная зона, нагретые до температуры выше АС3, в процессе охлаждения закаливаются и имеют более высокую твердость и прочность, чем основной металл. Этот участок называют твердой прослойкой.

Рядом с ней по обе стороны находятся участки высокоотпущенного металла, который и по отношению к основному металлу, и по отношению к твердой прослойке имеет пониженный предел текучести. Эти зоны образуют две мягкие прослойки. В случае если термически обработанная сталь сваривается аустенитным швом, возникает еще более сложное сочетание мягкого аустенитного шва, двух твердых и двух мягких прослоек. Если отношение пределов текучести прослойки и соседнего участка больше единицы, то прослойка будет твердой; в обратном случае - мягкой.

Неоднородность имеет место и при с сварке наклепанных термически неупрочняемых сталей и сплавов, например аустенитных сталей или алюминиевых сплавов. Нагрев до высоких температур снимает наклеп, достигнутый при холодной прокатке металла. На Рис. 4.1 показано распределение твердости в сварном соединении из сплава АМг6. Твердость шва и околошовной зоны близки к твердости отожженного металла. Предел прочности и предел текучести оказываются заметно ниже, чем у основного металла, а пластичность повышается. Представление о размерах зоны и степени разупрочнения дает также Рис. 4.2

Паяные стыковые соединения, припой в которых менее прочен, чем основной металл, также содержат мягкую прослойку. Прочность таких соединений зависит не только от прочности металла мягкой зоны, но и от ее относительного размера х = h/s, где h — ширина прослойки; s— толщина металла.

Рис. 4.2 Распределение твердости по Виккерсу сварного шва из сплава АМг6 (s =2,8 мм)

Табл. 1.4.1 Изменение свойств наклепанного металла в сварных стыковых соединениях

Материал, вид сварки

Половина ширины зоны разупрочнения в сварном соединении, мм

Основной металл в наклепанном состоянии

Сварное соединение в зоне разупрочнения

,МПа

, град

,МПа

, град

Сплав АМг6 (s =2,8 мм), автоматическая аргонодуговая сварка

16-18

410

35

340

150

Сталь 12Х18Н9Т (s = 3мм), автоматическая сварка под флюсом

12-14

1100

_

550

_

Механические свойства образца, вырезанного из мягкой прослойки и имеющего низкую прочность, еще не свидетельствуют о том, что сварное соединение в целом обладает такими же свойствами. Взаимодействие отдельных зон протекает сложным образом, и агрегатная прочность сварного соединения, как правило, не совпадает с прочностью какой-либо прослойки.

  1.  Растяжение поперек шва

Рассмотрим работу мягкой прослойки при растяжении стыкового соединения поперек шва (Рис. 4.3) достаточно большой протяженности за плоскость чертежа. В упругой стадии нагружения мягкая прослойка и соседние участки деформируются однородно, и при достижении предела текучести материала мягкой прослойки  в ней возникает пластическая деформация, в то время как соседние участки остаются в упругом состоянии. При дальнейшем повышении нагрузки и деформации коэффициент поперечной деформации  у прослойки будет выше, чем у соседнего металла.

Рис. 4.3 Зависимость ,  и  от относительной толщины прослойки.

По мере развития пластической деформации в прослойке , в то время как в упругих частях . Из-за неодинаковой поперечной деформации возникают касательные напряжения, максимальные на плоскостях раздела. Они будут препятствовать поперечному сужению прослойки в направлении толщины листа. Чем уже прослойка, т. е. чем меньше, тем меньшее поперечное сужение получает прослойка к моменту возникновения в ней истинных разрушающих напряжений. Так как среднее истинное разрушающее напряжение  меняется мало, то в более узких мягких прослойках площадь утоненного поперечного сечения прослойки Fy к моменту разрушения будет больше, а следовательно, будет больше и разрушающая сила Рр:

 

В этом заключается причина повышения несущей способности (эффект контактного упрочнения). Повышение разрушающей силы не может происходить беспредельно, так как соседние с мягкой прослойкой более прочные участки также при определенных условиях начнут пластически деформироваться. Чем более прочны соседние зоны, тем больше эффект контактного упрочнения. Твердые прослойки, находящиеся рядом с мягкими, усиливают этот эффект.

Относительное поперечное сужение  в мягкой прослойке и абсолютное удлинение образца  зависят от относительной толщины прослойки  и свойств металлов в соединении. На Рис. 4.3 видно, что в широких прослойках, когда эффекта контактного упрочнения еще не наблюдается,  остается постоянным при уменьшении , а  постепенно падает по мере уменьшения доли длины участка мягкой прослойки в общей длине образца. В области контактного упрочнения  резко падает, так как возрастают поперечные касательные напряжения, препятствующие сужению прослоек. Удлинение образца  при уменьшении также сначала уменьшается, но затем, когда реализуется повышение прочности,  возрастает, поскольку в пластическую деформацию в большей мере вовлекается основной металл.

  1.  Растяжение вдоль шва.

Рассмотрим случай, когда растягивающая сила направлена вдоль шва и все прослойки испытывают одинаковые деформации. Деформационная способность соединения и, как показано ниже, его несущая способность ограничены пластичностью металла наименее пластичной прослойки. На Рис. 4.4 показаны диаграммы зависимости напряжения от деформации в различных зонах сварного соединения. Точки А1, А2 и А3 соответствуют разрушению образца. Разрушение наступит при . При этом напряжения в основном металле,  в шве и  в твердой прослойке будут сильно различаться. Продольная растягивающая сила в основной воспринимается участком основного металла, так как его площадь намного превосходит и площадь поперечного сечения шва, и площадь твердой прослойки. И хотя уровень напряжений  в твердой прослойке будет велик, средние напряжения будут близки к  что существенно ниже разрушающих напряжений в точке А1. Это означает, что прочность сварного соединения нагруженного вдоль шва с твердой прослойкой, окажется ниже, чем прочность такого же элемента из основного металла. Отрицательное влияние твердой прослойки сказывается сильнее, если по длине соединения встречаются резкие изменения сечения шва, вызывающие концентрацию напряжений, или еще хуже — поперечные трещины или другие дефекты в твердой прослойке.

При действии силы вдоль шва наличие малопрочных мягких прослоек практически не влияет на общую несущую способность нагруженного элемента, так как площадь прослоек обычно невелика.

Рис. 4.4 Диаграммы зависимости напряжения от деформаций  для различных зон сварного соединения при растяжении вдоль шва.

  1.  Другие схемы нагружения.

При испытании соединений с мягкой прослойкой на изгиб до разрушения разрушающий момент Мр, при котором появляются трещины в прослойке, не зависит от относительной ширины прослойки . Это можно объяснить тем, что разрушение при изгибе не связано с образованием шейки и изменением размеров поперечного сечения. Поэтому касательные напряжения, действующие вблизи границ мягкой прослойки, хотя и влияют на процесс пластической деформации во время нагружения, но не изменяют существенно толщины образца и его момента сопротивления. Разрушение наступает, когда максимальное напряжение в крайнем волокне достигает истинного разрушающего напряжения металла мягкой прослойки . Если принять, что зависимость напряжения  от деформации  при  имеет линейный характер и к моменту разрушения эпюра напряжений в сечении выглядит, как показано на Рис. 4.5, то разрушающий момент равен

 

где Wмомент сопротивления сечения;  — предел текучести металла мягкой прослойки.

Рис. 4.5 Схематичное распределение напряжений при изгибе полосы с мягко прослойкой

При работе соединений с мягкой прослойкой в элементах конструкций влияние мягкой прослойки на прочность может несколько изменяться. В сосудах с внутренним давлением р, где , мягкая прослойка с малой  в кольцевом шве работает аналогично сварному соединению, которое растягивается вдоль прослойки. Пониженной прочности металла прослойки при этой схеме не обнаруживается, так как разрушение происходит вдоль сосуда.

Рис. 4.6 Мягкая широкая прослойка в кольцевом шве цилиндрического сосуда, работающего под внутренним давлением р

Если  велика, то мягкая прослойка удлиняется в окружном направлении сильнее, чем остальная часть сосуда, в результате чего искривляется прямолинейная образующая (Рис. 4.6). Разрушение может наступить вдоль образующей сосуда в зоне прослойки вследствие повышенной деформации в окружном направлении или даже по окружности из-за дополнительных деформаций изгиба и растяжения вдоль сосуда. Твердые прослойки в кольцевом сварном соединении разрушаются раньше, чем остальная часть сосуда достигает предельной пластической деформации в окружном направлении. Этот случай аналогичен растяжению сварного соединения вдоль шва при наличии в нем твердой прослойки. Момент разрушения зависит от пластичности твердой прослойки.

Мягкая прослойка в продольном шве ведет себя примерно так же, как при испытании образцов на одноосное растяжение с поперечной мягкой прослойкой. Твердые прослойки в продольных швах сосуда, если они не попадают в зону концентрации напряжений, обычно не снижают прочности сосуда.

В сварных соединениях прослойки могут находиться под углом к направлению действия сил, иметь произвольную форму поперечного сечения и иначе влиять на прочность. Однако общая тенденция их влияния оказывается такой же, как в случаях, рассмотренных выше.

  1.  Механические свойства металла сварных соединений.

Методы определения механических свойств сварных соединений регламентированы ГОСТ 6996. Стандарт устанавливает методы определения механических свойств при следующих видах испытаний:

  1.  испытании металла различных участков сварного соединения и наплавленного металла на статическое (кратковременное) растяжение;
  2.  испытании металла различных участков сварного соединения и наплавленного металла на ударный изгиб (на надрезанных образцах);
  3.  испытании металла различных участков сварного соединения на стойкость против механического старения;
  4.  измерении твердости металла различных участков сварного соединения и наплавленного металла;
  5.  испытании сварного соединения на статическое растяжение;
  6.  испытании сварного соединения на статический изгиб (загиб);
  7.  испытании сварного соединения на ударный разрыв.

Следует различать простейшие механические свойства металла отдельных участков сварного соединения и механические свойства сварного соединения в целом.

Простейшие механические свойства металла отдельных зон оценивают временным сопротивлением, пределом текучести, относительным удлинением и поперечным сужением, определяемыми на круглых цилиндрических образцах при статическом растяжении (1-й вид испытаний).

Свойства сварных соединений оценивают в ряде случаев теми же характеристиками или критериями, что и однородный основной металл, но при этом в них вкладывают иное содержание. Например, распространенной характеристикой прочности является временное сопротивление. Можно говорить о временном сопротивлении металла шва или металла околошовной зоны, если образцы взяты достаточно малыми, чтобы содержать в себе относительно однородный по свойствам металл.

Временное сопротивление сварного соединения, напротив, следует определять на достаточно крупных образцах, которые бы включали в себя все типичные зоны сварного соединения и обеспечивали такое взаимодействие их между собой, которое характерно для работы сварного соединения в конструкции (5-й вид испытаний). Такая характеристика, как предел текучести сварного соединения, в большинстве случаев вообще не может быть определена, так как, во-первых, из-за неоднородности механических свойств пластические деформации возникают, не по всей длине образца одновременно, во-вторых, пластические деформации неравномерны в поперечном сечении образца из-за эффекта контактного упрочнения, в-третьих, натуральное сварное соединение с неснятым усилением создает концентрацию напряжений и даже может иметь собственные напряжения, что в принципе делает поле напряжений в образце неоднородным.

Сравнительно экономной в определении и достаточно информативной является твердость металла. Ее распределение в сечении сварного соединения при наличии корреляционных зависимостей между твердостью и другими простейшими механическими свойствами позволяет судить об уровне прочности отдельных зон, а также о степени неоднородности механических свойств. По твердости можно приближенно судить о структурном состоянии металла.

Рис. 4.7 Пример задания мест измерения твердости

Для оценки пластичности стыковых сварных соединений проводят испытания на статический изгиб. Схема испытаний представлена на Рис. 4.8. При испытании определяют способность соединения принимать заданный по размеру и форме изгиб. Эта способность характеризуется углом загиба α (Рис. 4.9), при котором в растянутой зоне образца образуется первая трещина, развивающаяся в процессе испытания. Если длина трещин, возникающих в процессе испытания в растянутой зоне образца, не превышает 20 % его ширины, но не более 5 мм, то они не являются браковочным признаком. Определяют также место образования трещины или разрушения (по металлу шва, металлу околошовной зоны или основному металлу).

В зависимости от требований, установленных соответствующей НТД, испытания проводят до достижения нормируемого угла изгиба или угла изгиба, при котором образуется первая являющаяся браковочным признаком трещина, до параллельности или соприкосновения сторон образца.

Рис. 4.8 Схемы испытаний сварных соединений на статический изгиб.

Рис. 4.9 Определение угла загиба при испытаниях на статический изгиб.

Вместо испытаний на статический изгиб для сварных соединений труб малового диаметра назначают испытания на сплющиваение, а для тавровых сварных соединений назначают испытания на излом.

а)

б)

Рис. 4.10 Схемы испытаний на сплющивание стыковых сварных соединений труб (а), и на излом образцов из таврового сварного соединения (б).

  1.  Концентрация напряжений и деформаций в сварных соединениях
    1.  Общие положения

Под концентрацией напряжений понимают резкое местное увеличение напряжений в местах изменения формы деталей (различные проточки, резьба, отверстия и т.д.). В сварных соединениях концентрацию напряжений вызывают нахлестки, усиления и т.д., а также технологические дефекты (поры, шлаковые включения, особенно трещины и непровары) Влияние концентрации напряжений на прочность конструкций, в том числе и сварных исключительно велико. Это основной фактор снижающий прочность конструкции.

Рассмотрим предварительно распределение напряжений в пределах упругих деформаций на полосе шириной а, ослабленной круглым небольшим отверстием диаметром d (Ошибка! Источник ссылки не найден., а).

При у=d/2, σ’=3σ, т. е. теоретический коэффициент концентрации КТ=σ’/σ=3. При y=2d, σ'=1,04σ, т. е. приближается к единице.

Рис. 5.1 Концентрация напряжений: а — в полосе е круглым отверстием; б — в полосе с эллиптическим отверстием; в — распределение σ в упругой стадии, г — распределение σ в пластической стадии нагружения.

В случае эллиптического отверстия (Ошибка! Источник ссылки не найден. б) теоретический коэффициент концентрации напряжений в пределах упругих деформаций

( 2.1)

При с→0 КT→∞. Это решение не точно, так как при малых значениях деформаций, вызванные внешними силами, оказывают существенное влияние на форму отверстия и формула Ошибка! Источник ссылки не найден. не выполняется.

Указанные местные напряжения в зоне концентрации не опасны для прочности в конструкциях из пластичных металлов при статических нагрузках. Поясним это положение.

Диаграммы растяжения пластичного металла нередко схематизируются. Их приближенно заменяют двумя прямыми: наклонной, выражающей зависимость напряжения от деформаций в упругой области, и горизонтальной. Горизонтальная прямая показывает, что при ε→εТ деформация протекает пластически, без увеличения нагрузки, приложенной к испытуемому элементу.

Вернемся к рассмотрению эпюры напряженной полосы, ослабленной отверстием (Ошибка! Источник ссылки не найден., в). Напряженное состояние в сечении А—А близко к одноосному. Допустим, что около отверстия напряжение достигло значения σТ,. Это соответствует деформации εТ,. При увеличении нагрузки деформации возросли, но напряжения в зоне, где ε> εТ (Ошибка! Источник ссылки не найден., г), как это следует из схематизированной диаграммы растяжения, остаются равными σТ. Эпюра станет изменять свою форму и выравниваться. Приближенно можно принять, что она примет очертание, близкое к прямоугольному (Ошибка! Источник ссылки не найден., д), что и было положено в основу расчета прочности по элементарным формулам.

Сглаживание эпюры напряжений в пластической стадии, рассмотренное на конкретном примере, является закономерным процессом, имеющим место во многих элементах конструкций из пластичных сталей (низкоуглеродистые и низколегированные) при одноосных напряженных состояниях (а иногда и многоосных). Однако концентрация напряжений существенно снижает прочность при переменных нагрузках; в случае ограниченной пластичности металла и при статических нагрузках.

Концентрацию напряжений в сварных конструкциях вызывают следующие причины: технологические дефекты шва — газовые пузыри, шлаковые включения и особенно трещины и непровары. Возле этих дефектов при нагружении силовые линии искривляются, в результате чего образуется концентрация напряжений. Коэффициенты концентрации напряжений около указанных дефектов значительны, но при их небольшом числе и размерах прочность сварных соединений остается удовлетворительной. В плотных однородных стыковых швах концентрация напряжений может быть сведена до минимума.

  1.  Распределение напряжений в стыковых швах

В стыковых соединениях с обработанными гладкими поверхностями швов, не имеющих внутренних дефектов (непроваров, трещин, пор, шлаковых включений), напряжения от продольной силы распределяются по поперечному сечению соединяемых элементов равномерно и определяются по формуле

(5.2)

Рис. 5.3 Распределение напряжений в стыковом шве

Когда поверхность имеет форму, показанную на (Рис. 5.3,а), распределение напряжений по сечению становится неравномерным. На (Рис. 5.3,б) показано распределение напряжений в стыковом соединении. Зоны шва, сопрягаемые с основным металлом, испытывают концентрацию напряжений. Средние напряжения на оси шва несколько меньше напряжений в основном металле вне соединения.

Концентрация напряжений образуется также в корне шва при его непроваре.

Вторым источником концентрации может служить смещение одного элемента относительно другого (Ошибка! Источник ссылки не найден. а, б), а также в результате местных деформаций, вызванных неравномерным сокращением шва.

Влияние концентраторов на прочность не учитывается при статических загружениях, но является весьма существенным при действии динамических нагрузок.

Концентрация напряжений, вызванная очертанием шва, имеет место в зоне сопряжения шва с основным металлом, зависит от степени утолщения шва и радиуса перехода. Концентрация резко возрастает при уменьшении радиуса до долей миллиметра.

Рис. 5.4 Депланация (а) и изгиб стыкового шва (б).

Концентрация напряжений, возникающих в зоне пор, имеет пространственный характер. Как показывают теоретические расчеты, коэффициенты концентрации напряжений возле сферических пор в 1,5 раза меньше концентрации в зоне цилиндрических отверстий того же радиуса и положения относительно поверхности.

Стыковые швы при всех видах сварки — дуговой, контактной, электронно-лучевой — являются оптимальными в отношении концентрации напряжений. При доброкачественном технологическом процессе, отсутствии пор, непроваров, включений, смещений кромок, при доведении до минимума остаточных местных сварочных деформаций и, наконец, что особенно важно, при рациональном очертании швов их плавных сопряжениях с основным металлом результирующий коэффициент концентрации напряжений может быть сведен до значений, близких к единице. В других типах соединений такой результат получить практически невозможно.

  1.  Распределение напряжений в лобовых швах

В лобовых швах имеет место значительная концентрация напряжений. Большое влияние на распределение напряжений оказывает конфигурации поперечного сечения шва: глубина проплавления, угол при вершине и форма свободной поверхности шва. Концентрация напряжений заметно снижается при увеличении глубины проплавления; величина угла и введении плавных переходов от шва к поверхности соединяемых деталей.

Рис. 5.5 Распределение напряжений нахлесточных соединениях с двусторонними накладками в сечениях: б (А—А) в (С-А) г (В—В)

При возрастании нагрузок происходит выравнивание деформаций и снижение концентраций напряжений.

Распределения напряжений в накладках с лобовыми швами показаны на Рис. 5.5. Наибольший коэффициент концентрации равный двум имеет место в сечении А—А (Рис. 5.5, б). В нахлесточных соединениях с двумя лобовыми швами усилия между ними распределяются равномерно, в случае если элементы имеют равные толщины.

Рис. 5.6 Концентрация напряжений в тавровом сварном соединении.

Концентрация напряжений имеет место также в лобовых швах тавровых соединений. Так, возле ребер жесткости, приваренных к растягиваемому элементу, образуется концентрация напряжений х по сечению А—А.

Коэффициент концентрации напряжений в шве таврового соединения зависит от его очертания и от формы сопряжения в основным металлом.

  1.  Распределение напряжений в соединениях с фланговыми швами

В соединениях с фланговыми швами имеет место концентрация напряжений в швах и в основном металле полос между швами.

Рассмотрим соединение двух полос, соединенных швами с катетом К длиной L (рис. 4.6), Ввиду незначительной ширины полос условно примем распределение напряжений а в полосах равномерным по их ширине.

Основные элементы под действием растягивающих усилий удлиняются и перемещаются, во фланговых швах образуются сдвиговые деформации. Прямоугольный элемент dx шва 1—1—2—2 обращается в 1’—1’’—2’—2’’ (Рис. 5.7, а). Наибольшие деформации наблюдаются в крайних точках шва, наименьшие — в средних. Поэтому касательные напряжения распределяются по длине шва неравномерно.

В соединениях, у которых площади поперечных сечений соединяемых деталей равны (А1=А2=А) (Рис. 5.7, б),

напряжение в точке шва определяется уравнением:

G — модуль сдвига; Е — модуль упругости; L — длина шва.

Рис. 5.7 Распределение усилий в соединении с длинными фланговыми швами, прикрепляющими узкую полосу:

а — общий вид соединения; б — распределение по длине шва при А1=А2; в — распределение по длине шва при А1<А2.

Наибольшие значения τX принимает в точках х=0 и х=1:

Для равнопрочных соединений (2[τ]βKL=[σ]рA) при условии, что [τ]=0.6[σ]р и β=0,7, а также учитывая, что сt 0L=1, теоретический коэффициент концентрации напряжений в стальном фланговом шве

Если А1<А2, то наибольшее значение τХ будет со стороны элемента с меньшим поперечным сечением. При условии, что все деформации упругие, эпюра распределения τХ имеет вид, показанный на Рис. 5.7, в.

Рис. 5.8 Распределение напряжений σх в широкой накладке соединения с короткими фланговыми швами

Рассмотрим распределение нормальных напряжении между фланговыми швами в соединениях с накладками (Рис. 5.8). Допустим, что фланговые швы имеют небольшую длину и примем приближенно, что напряжения τ вдоль их длины одинаковы. Ширину же листов будем считать значительной и определять концентрацию напряжений в металле листов, вызванную фланговыми швами. Силовой поток в растянутом листе сгущается в зоне фланговых швов, а средняя часть напряжена мало. Поэтому нормальные напряжения. максимальны на краях накладки и минимальны в середине.

Эпюра σ имеет вид, изображены на Рис. 5.8, и выражается законом гиперболического косинуса, т. е. цепной линией..

При различных отношениях а/L коэффициент концентрации принимает следующие значения:

a/L

0,1

0,5

1,0

2,0

KT

1,45

2,01

3,37

6,61

Приведенные данные показывают, что при значительном увеличении ширины листа по сравнению с длиной фланговых швов коэффициент концентрации нормальных напряжений в листе возрастает. В соединениях с длинными фланговыми швами при небольшом расстоянии между ними концентрация образуется главным образом в концах фланговых швов (концентрация касательных напряжений τХ). В соединениях с короткими фланговыми швами при относительно большом расстоянии между ними концентрация возникает преимущественно в основном металле на участке между швами (концентрация нормальных напряжений σх). В соединениях, применяемых в сварных конструкциях, образуются обе разновидности концентраций в более или менее резко выраженной форме.

  1.  Распределение напряжений в комбинированных соединениях с лобовыми и фланговыми швами

Распределение напряжений в соединениях с накладками неравномерно. В тех соединениях, где стыковые швы перекрыты односторонними накладками, образуется эксцентриситет и появляется изгибающий момент. В таких соединениях напряжения не только не уменьшаются по сравнению со стыковыми швами без накладок, но даже заметно возрастают. В соединениях, не имеющих стыковых швов, накладки также вызывают значительную концентрацию напряжений.

На Рис. 5.9 показаны результаты экспериментального изучения распределения напряжений в различных попереченых сечениях (А—А, Б—Б, В—В) соединений с односторонними накладками, когда накладки приварены к соединяемым полосам только фланговыми швами. В точках, близко расположенных к фланговым швам, образуется концентрация напряжений; точки, удаленные от швов и лежащие возле оси элемента, напряжены весьма слабо.

Рис. 5.9 Распределение напряжений в соединениях с накладками без стыковых швов:

а — распределение между фланговыми швами; б — выравнивание распределения σ в соединениях с лобовыми и фланговыми швами

Вдали от накладок эпюра напряжений в поперечном сечении выравнивается и элемент работает более равномерно.

Неравномерность распределения напряжений по поперечному сечению накладок значительно уменьшается при добавлении к фланговым швам лобовых. На Рис. 5.9, б показано распределение напряжений в таком соединении в сечениях Г—Г, Д-Д, Е—Е.

  1.  Распределение усилий в соединениях, полученных контактной сваркой

В точечных соединениях возникает концентрация напряжений, обусловленная рядом факторов.

1. В результате сгущения силовых линий основной металл испытывает концентрацию напряжений в надточечной зоне (Рис. 5.10, а). Интенсивность сгущения определяет концентрацию. Она растет с ростом отношения t/d (t — расстояние между точками в направлении, перпендикулярном действию силы; d — диаметр точки). Коэффициент концентрации напряжений в этом соединении может вычисляться по приближенной формуле

.

На Рис. 5.10,б показана эпюра распределения а в продольном сечении соединения. Максимального значения напряжение достигает в сечении 0—0.

Усилия в отдельных точках соединения, расположенных в продольном ряду, при их работе в упругой области не одинаковы.

Рис. 5.10 Распределение напряжений в точечных соединениях:

а — общий вид; б — распределение σ в продольном сечении

Распределение усилий между точками в продольном ряду дано в Табл. 5.1.

Крайние точки оказываются нагруженными значительно сильнее, чем средние. С увеличением числа точек в продольном ряду такая диспропорция возрастает. Подобное явление имеет место при работе в пределах упругости. За пределами текучести наступает значительное выравнивание усилий.

Сварная точка испытывает локальные напряжения в пределах упругих деформаций во много раз больше расчетных. Этим и объясняется низкая прочность точек при работе под переменными нагрузками.

Табл. 5.1 Распределение усилий между точками в продольном ряду

Номера

точек

Число точек в продольном ряду

3

4

5

1

0,444Р

0,436Р

0,435Р

2

0,112Р

0,064Р

0.058Р

3

0,444Р

0,064Р

0,014Р

4

0,436Р

0,058P

5

0,435Р

При статических нагрузках за пределом упругих деформаций концентрация напряжений в значительной степени смягчается и значения разрушающих усилий, найденные опытным путем, незначительно отличаются от расчетных.

В соединениях, выполненных шовной контактной сваркой, неравномерность распределения вызвана рядом причин.

Рис. 5.11 Появление концентрации напряжений в соединениях с шовными швами:

а — неравномерное распределение по толщине; 6 — изгиб соединении

1. Распределение напряжений σ в зоне шва по длине детали при растяжении происходит неравномерно. Коэффициент концентрации напряжений при растяжении деталей, как правило, не велик и лишь незначительно превышает единицу.

2. При растяжении соединения происходит изгиб детали (Рис. 5.11, а, б), который обычно не учитывают при расчете.

Следует помнить, что за пределом текучести происходит некоторое выравнивание напряжений и коэффициент концентрации при этом снижается.

  1.  Концентрация напряжений в паяных швах

В паяных соединениях нахлесточного типа распределение касательных напряжений т по длине нахлестки в направлении действия сил происходит неравномерно и в значительной степени аналогично условиям работы сварных фланговых швов. Для соединения двух деталей с равными площадями поперечных сечений A=sb (рис. 4.13) наибольшее значение усилия qmax на единицу длины паяного шва в концевых точках определяется уравнением

G — модуль упругости металла паяного шва при сдвиге; Е — модуль упругости основного металла при растяжении; s0— толщина мягкой прослойки; b — ширина шва; L — длина шва; s — толщина основного металла.

Рис. 5.12 Распределение т в паяном соединении в пределах упругих деформаций

Коэффициент концентрации напряжений в паяном шве

Чем меньше отношения G/E и s/s0, тем соответственно меньше коэффициент концентрации.

Преимуществом паяных швов является возможность образования пластических деформаций в нахлесточных соединениях, сопровождаемых снижением напряжений в крайних точках соединений и выравниванием эпюры напряжений по длине соединения. При сопоставлении значений концентраций напряжений в паяном и сварном нахлесточных соединениях, состоящих из двух лобовых швов, коэффициенты концентрации напряжений высоки в обоих случаях, но при пайке они ниже. Это обстоятельство объясняется более рациональной конструктивной формой паяного соединения по сравнению со сварным.

  1.  Сопротивление сварных соединений усталости
    1.  Прочность основного металла при переменных (циклических) нагрузках

Современные методы расчета прочности деталей основаны на гипотезах непрерывности, однородности и изотропности материала. В действительности распределение усилий между зернами металла происходит неравномерно. В некоторых зернах могут иметь место значительные пластические деформации, в результате чего образуются микротрещины. При переменных нагрузках они имеют тенденцию развиваться: сначала развитие трещин происходит очень медленно, далее ускоряется, а на последнем этапе происходит внезапное разрушение. При этом местные напряжения оказываются опасными для прочности не только хрупких, но и пластичных металлов.

Анализ механизмов усталостного разрушения очень сложен, так как требует изучения неоднородности среды (кристаллиты и межкристаллические среды). В сварных соединениях задача анализа значительно осложняется наличием остаточных напряжений и неоднородностью свойств различных зон наплавленного и основного металлов.

Рис. 6.1 Наиболее распространенная схема проведения испытаний на циклическую прочность.

  1.  Диаграмма усталостной прочности

Прочность при переменных нагрузках зависит главным образом от числа циклов нагружений, амплитуды изменения напряжения, формы и размеров испытуемых образцов, их материала, состояния поверхности, вида на-гружения (изгиб, кручение), свойств среды, в которой производится испытание (воздух, вода и т. п.).

При многократно повторяющийся нагрузке разрушение может происходить под действием напряжений меньших, чем предел прочности.

Для определения прочности материала в таких условиях проводят испытания на циклическую прочность (Рис. 6.1).

Рис. 6.2 Диаграмма прочности стали в зависимости от числа нагружений N:

а —в декартовых координатах; б —в полулогарифмических координатах

На Рис. 6.2, а показана диаграмма прочности металла в зависимости от числа циклов нагружений N. Максимальное напряжение, при котором материал не разрушается при достаточно большом количестве циклов нагружения, называется пределом выносливости. При испытании стальных образцов предел выносливости определяется, как правило, при N=106.

Усталостное разрушение — следствие постепенного развития микродефектов в материале.

Если образец испытывают при меньшем числе нагружений, то значение разрушающих напряжений называют пределом ограниченной выносливости.

Ограниченный предел выносливости определяется отношением

где N — число циклов; σr — предел выносливости при цикле r, m — коэффициент, который зависит от физических свойств материалов и определяется величиной угла наклона усталостной прямой (Рис. 6.2,6).

На Рис. 6.2, б изображена диаграмма прочности металла в зависимости от числа циклов нагружения, построенная в полулогарифмических координатах. Число циклов в логарифмическом масштабе отложено по оси абсцисс, а значения разрушающих напряжений — по оси ординат. Опытами подтверждено, что зависимость σ=f(N) при построении в этих координатах может быть изображена двумя отрезками прямой (см. Рис. 6.2, б): наклонным и горизонтальным. Горизонтальная прямая соответствует пределу выносливости,

Диаграмма строится при использовании теории вероятностей путем обработки статистического материала.

  1.  Влияние характеристики цикла r на прочность при переменных нагрузках

Предел выносливости зависит в значительной степени от характеристики цикла. Цикл — совокупность всех значений напряжений за время одного периода нагружения.

Отношение  называют коэффициентом амплитуды или характеристикой цикла, гдеи— соответственно наибольшее и наименьшее напряжения цикла по абсолютной величине.

На (Рис. 6.3, а) показана схема цикла симметричного нагружения | | = ||, на (Рис. 6.3, г) — от нулевого.

Рис. 6.3 Осциллограммы нагружений с различными характеристиками циклов.

Пределы выносливости, определенные при симметричном цикле, обозначаются σ-1, при отнулевом — σ0; при произвольном — σr. Наибольшее значение имеют пределы выносливости при испытаниях на изгиб, несколько меньшее — при осевом нагружении и наименьшее — при кручении. Характер изменения напряжений по времени бывает различным: как синусоидальным (Рис. 6.3, а-г), так и другой формы (Рис. 6.3, д-е).

Рис. 6.4 Диаграмма прочности и усталости в координатах σтax, σmln и σт

В целях изучения пределов выносливости в зависимости от характеристики циклов строится диаграмма выносливости. Наиболее часто пользуются построением диаграммы выносливости испытуемых образцов по методу Смита, представленной в схематизированной форме (Рис. 6.4). Она дает возможность на основании экспериментального определения предела выносливости при симметричном цикле найти пределы выносливости при любом цикле.

По данным других исследований диаграмму прочности и усталости строят в форме параллельных прямых.

Обоснованием к этому служит положение, что для ряда материалов разрушение определяется главным образом диапазоном изменений напряжений в то время как постоянная составляющая  не имеет существенного влияния. Диаграмма может быть использована до того, как , достигает . По оси абсцисс откладываются значения средних напряжений цикла

,

по оси ординат — напряжения σmax и σmin. Под углом 45° к оси абсцисс проводится прямая. Величины амплитуд

откладываются симметрично относительно этой прямой.

Прямые пересекаются в точке К, которая характеризует цикл с бесконечно малой амплитудой. Условно принимают, что эта точка соответствует пределу прочности σв. Отрезок ОА выражает значение предела выносливости при симметричном цикле. При этом σm=0.

В большинстве случаев пользуются участком диаграммы с напряжениями, не превышающими предела текучести σT. Из точки D с координатами σT проводят горизонтальную прямую до пересечения с прямой АК в точке N. Эту точку проецируют на прямую А'К. в точке М. Ломаная линия ANDMA' выражает схематизированную диаграмму усталости в пределах упругих деформаций. Отрезок ВС выражает значение предела выносливости при пульсирующем цикле σ0; отрезок OB= σ0/2.

Проведем из точки 0 прямую под произвольным углом а к оси абсцисс, тогда

(6.1)

Рис. 6.5 Полная диаграмма

усталости в области растяжения и сжатия

По этому отношению для заданного цикла r определяют tgα. Точка Р определяет значение предела выносливости при заданном цикле нагружения.

В машиностроении нередко для определения пределов выносливости сварных соединений при цикле r поступают следующим образом. Экспериментальным путем определяют предел выносливости σ-1 при цикле  стандартного образца. Определяют предел выносливости при том же цикле проектируемого сварного соединения σ-1 св Находят отношение η= σ-1/ σ-1 св. Перестраивают диаграмму Смита в масштабе η, и по ней определяют предел выносливости для любого цикла r, пользуясь формулой (6.1).

На Рис. 6.5 показана полная диаграмма зависимости σmax и σmin от среднего напряжения σm в области растягивающих и сжимающих напряжений. С ростом средних сжимающих напряжений амплитуда разрушающих напряжений растет, пределом роста является предел текучести при сжатии σТСЖ.

Отношение предела выносливости и предела текучести при испытании стандартных гладких образцов из низкоуглеродистых сталей на изгиб в условиях симметричного цикла равно

. Для низколегированных конструкционных сталей отношение  меньше, чем для низкоуглеродистых.

Обычно при повышении температуры пределы выносливости сталей понижаются. В агрессивных средах предел выносливости значительно уменьшается. Прочность деталей конструкций при переменных нагрузках зависит от концентрации напряжении.

  1.  Коэффициенты концентрации и их влияние на усталостную прочность

Эффективным коэффициентом концентрации напряжений КЭ называется отношение предела выносливости гладкого образца к пределу выносливости образца при наличии концентратора; КЭ >1; причем, чем ближе КЭ к единице, тем лучше работает изделие. У хрупких материалов эффективный коэффициент концентрации КЭ близок к теоретическому, у пластичных — он значительно меньше.

Опытами установлено, что при значениях r, близких к единице, концентрация напряжений не оказывает существенного влияния на предел выносливости. С уменьшением r влияние концентраторов на понижение предела выносливости растет, наибольшего значения КЭ достигает при .

Чувствительность к концентраторам в образцах из низколегированной стали может быть выше, чем из низкоуглеродистой. Пределы выносливости сталей, испытанных при изгибающих усилиях и симметричных циклах, приведены в Табл. 6.1

Табл. 6.1 Пределы выносливости сталей σ-1, МПа

Испытуемый образец

Ст. 3 кп

Ст.3 сп

15ХСНД

Лист без обработки

121

158

188

Лист шлифованный

134

198

-

Лист с отверстиями

86

110

150

Предел выносливости основного металла в зоне термического влияния иногда изменяется по сравнению с пределом выносливости образцов из основного металла, не подвергавшегося влиянию процесса сварки. Восстановить предел выносливости можно иногда термической обработкой сварного соединения.

Заметное влияние на сопротивление усталости оказывают также размеры сечений образцов или конструктивных элементов. При увеличении диаметра образцов с 10 до 200 мм значения предела выносливости стали 22 снизились с 215 до 165 МПа, а стали 35 —со 155 до 90 МПа.

Крайне отрицательное влияние на усталостную прочность оказывает наличие коррозионно агрессивных сред сварных соединений при эксплуатации.

  1.  Влияние частоты циклов нагружения на усталостную прочность

Сварные конструкции в некоторых областях техники подвергают испытаниям при низкой частоте нагружений и доводят до разрушения при нескольких десятках тысяч циклов. Такие испытания называются повторно-статическими. Многие явления, свойственные поведению образцов под усталостными нагрузками, имеют место при повторно-статических нагрузках. Прочность образцов зависит от наличия концентраторов в соединениях, свойств материала и качества сварных соединений.

Тем не менее, сопротивляемость сварных соединений нагружениям при низкой частоте (несколько циклов в минуту, в час, в сутки) заметно ниже, чем при испытаниях с высокой частотой. Низкочастотные нагрузки снижают прочность всех видов материалов и сварных соединений. Низкочастотным нагружениям подвергаются конструкции подводных судов, резервуарно-котельные конструкции. Высокочастотные колебания нагрузки, модулированные более низкой частотой, особенно резко снижают усталостное сопротивление сварных конструкций.

  1.  Сопротивление усталости сварных соединений, выполненных дуговой сваркой

В сварных конструкциях предел выносливости зависит от материала, технологического процесса сварки, формы конструкции, а также от рода усилия и характеристики цикла нагружения. Влияние технологического процесса сварки на прочность при переменных нагрузках обычно изучают на образцах стандартного типа, имеющих стыковые швы. В образцах со снятым усилением концентрация напряжений практически отсутствует. Как показали результаты многочисленных опытов, в таких обработанных сварных образцах из углеродистых и ряда низколегированных конструкционных сталей отношение

σ-1СВ/σ-1=0,9

где

σ-1 — предел выносливости образца из основного металла при симметричном цикле;

σ-1 СВ — предел выносливости стыкового сварного соединения.

Значения предела выносливости при автоматической сварке более стабильны, нежели при ручной. Это объясняется лучшим качеством сварных швов.

При действии переменных нагрузок следует отдельно рассматривать прочность швов и прочность прилегающего к ним основного металла. В большинстве случаев в стыковых соединениях разрушение наступает в зонах термического влияния. Это объясняется наличием в них концентраторов напряжений от швов с необработанной поверхностью, а также разупрочнений легированных или закаленных сталей в результате теплового действия сварочной дуги. На Ошибка! Источник ссылки не найден. приведены усталостные характеристики сталей и алюминиевого сплава Д16Т и их сварных соединений. Высокие отношения пределов выносливости соединений к пределам прочности основного металла имеют низкоуглеродистые стали. Аустенитные стали, высокопрочная сталь марки 30ХГСА, сплав Д16Т имеют низкие значения

σ-1свВ СВ и σ-1/σВ.

Стали повышенной прочности наиболее эффективно используются в условиях статических и переменных нагрузок при r>0. Если значения коэффициентов концентрации напряжений конструкции высоки и r→-1, то эффективность применения высокопрочных сталей резко понижается, в этом случае пределы выносливости для сталей с совершенно различными значениями пределов прочности почти не отличаются.

Рис. 6.6 Пределы прочности и выносливости сталей и сплава Д16Т:σв — основного металла (вертикальная штриховка); σ-1 — основного металла (не заштрихованные полосы); σ-1св — сварного соединения (косая штриховка).

Решающее влияние на усталостную прочность оказывает качество технологического процесса.

При наличии технологических дефектов (шлаковых включений, пор, окислов, трещин, непроваров и т. п.) прочность сварных соединений при переменных нагрузках резко падает. Даже небольшой непровар корня шва образует надрез и концентрацию напряжений, что может существенно снижать прочность стыковых соединений при переменных нагрузках.

Влияние непровара на уменьшение усталостной прочности зависит от рода материала. Очень чувствительны к непроварам сварные соединения из аустенитных сталей типа 12Х18Н9Т и титановых сплавов. На Ошибка! Источник ссылки не найден. показано изменение пределов

выносливости сталей и алюминиевых сплавов в зависимости от глубины непровара.

Рис. 6.7 Влияние глубины непровара в выносливости стыковых соединении при растяжении (r=0,1…0,3; N=2*106 циклов): — АМг6; 2 — низкоуглеродистая сталь; 3 – 12Х18Н10Т; 4 – Д16Т; 5 – 30ХГСА.

Большое влияние на предел выносливости оказывает очертание поверхности швов. У выпуклых стыковых швов он более низкий, чем у гладких; весьма хорошие результаты получаются при снятии усилений стыковых швов или при их обработке, обеспечивающей плавный переход от шва к основному металлу. Получить соединения с хорошей прочностью можно не только при сварке прокатных элементов, но и при сварке литых деталей или прокатных с литыми.

Прочность при переменных нагрузках тавровых соединений в значительной степени зависит от подготовки кромок. Экспериментально доказано, что предел выносливости таврового соединения, сваренного с подготовкой кромок, выше, чем того же соединения без подготовки кромок. Причиной этого является концентрация напряжений из-за непровара. При сварке тавровых соединений на автоматах под флюсом глубина проплавления больше, чем при других видах сварки. Это обстоятельство улучшает работу соединений, подвергавшихся переменным нагрузкам (Ошибка! Источник ссылки не найден.).

Прочность нахлесточных соединений и соединений с накладками, работающих при переменных нагрузках, низка из-за концентрации напряжений в соединениях этого рода. Она образуется в основном металле вблизи угловых швов, между швами, в поперечных сечениях самих швов, а также по длине швов вследствие неравномерного распределения усилий.

Особенно пониженной усталостной прочностью обладают соединения с фланговыми швами.

Работоспособность соединений с фланговыми швами при переменных нагрузках зависит от длины фланговых швов, от ширины накладок, и может быть повышена путем применения улучшенных форм и технологической обработки.

Швы должны обеспечивать минимальный уровень концентрации напряжений, обеспечивать наиболее равномерное распределение напряжений. Плавные переходы от наплавленного металла к основному достигаются механической зачисткой швов, а также при обработке швов аргонодуговой сваркой вольфрамовым электродом. После такой обработки в стыковых соединениях из стали Ст3 предел усталости повышается с 80 до 120 МПа.

Рис. 6.86.9 Пределы выносливости тавровых соединений в зависимости от разделки кромок: 1 — основной металл; 2 — образец, сваренный на автомате с разделкой кромок; 3 — то же, при сварке вручную; 4 — образец, сваренный вручную без разделки кромок; 5 — то же, при сварке автоматом.

Примеры рационального оформления сварных швов работающих при переменных нагрузках приведены на Ошибка! Источник ссылки не найден..

Рис. 6.10 Рациональные формы сварных швов, работающих при переменных нагрузках.

Повышение усталостной прочности механической обработкой деталей, обеспечивающей плавное сопряжение наплавленного и основного металла Эффективность такого приема можно видеть на примере приварки планок к листовым элементам, изображенным на Ошибка! Источник ссылки не найден., а…в. Для сравнения на рисунках указаны пределы выносливости. При отсутствии выкружки (Ошибка! Источник ссылки не найден., г) предел выносливости существенно снижается (по сравнению с Ошибка! Источник ссылки не найден. а…в).

Рис. 6.11 Влияние конструкции на усталостную прочность: а) Выкружка в целом элементе полосы; б) Выкружка в приваренном элементе; в) Деконцентратор; г) Швы без обработки.

  1.  Сопротивление усталости сварных соединений, выполненных контактной сваркой

Соединения, выполняемые контактной стыковой сваркой, обладают высокими механическими свойствами не только при статических, но и при переменных нагрузках. При сварке низкоуглеродистых и многих низколегированных сталей соединения имеют предел выносливости, близкий к пределу выносливости основного металла. Большое влияние на усталостную прочность оказывает не только качество провара стыка, а также состояние его поверхности. При грубой обработке поверхности предел выносливости меньше, при гладкой, особенно полированной— больше.

Усталостная прочность точечных соединений значительно уступает прочности стыковых. Точечные соединения условно рассчитывают по напряжениям среза. Однако их разрушения при работе под переменными нагрузками почти всегда происходят в результате разрывов металла в надточечной или околоточечной зоне. Эти разрушения вызваны концентраторами напряжений. Усталостная прочность точечных соединений в большей степени зависит от того, являются ли они связующими или рабочими, от рода материала и степени его чувствительности к концентраторам напряжений.

Данные экспериментов показывают, что пределы выносливости рабочих точек намного ниже, чем связующих, что наименее чувствительны к концентраторам точечные соединения из низкоуглеродистых сталей, более чувствительны соединения из аустенитной стали 12Х18Н10Т и из стали 30ХГСА после закалки и низкого отпуска.

Усталостная прочность в сильной степени зависит от конструкции соединения. Чем больше шаг между точками в ряду, направленном перпендикулярно действующей силе, тем выше концентрация напряжений и ниже усталостная прочность. В соединениях с двусрезными точками усталостная прочность повышается более чем в два раза по сравнению с односрезными. Качество сварных точек, особенно рабочих, также влияет на усталостную прочность. Внутренние трещины в точке оказывают небольшое влияние на значение разрушающей нагрузки; нагруженные же трещины могут снизить ее в три раза и более. При знакопеременных нагружениях предел выносливости в несколько раз меньше, чем при знакопостоянных.

Усталостная прочность соединений, выполненных шовной сваркой, ниже стыковой, но выше, чем при точечной, так как соединения обеспечивают более равномерный силовой поток.

  1.  Влияние термообработки и остаточных напряжений на сопротивления усталости сварных соединений

При сварке элементов больших толщин термическая обработка, особенно в сочетании со снятием усиления, приводит к заметному повышению усталостной прочности. При высокой концентрации напряжений в ряде случаев термическая обработка не эффективна и даже снижает прочность при переменных нагрузках. В некоторых случаях основной металл при переменных нагрузках приобретает пониженную прочность в зоне отпуска. Аналогичное понижение предела выносливости в зоне отпуска наблюдается в сварных соединениях термически обработанных цветных сплавов (алюминиевые, магниевые и др.).

Отпуск при температуре 650 °С, устраняющий остаточные напряжения, вызванные сваркой, как правило, не повышает усталостную прочность низколегированных сталей. Это объясняется тем, что отпуск не только устраняет остаточные напряжения, но и изменяет до некоторой степени механические свойства металла — снижает предел текучести. При нагружениях в условиях симметричного цикла отпуск полезен; при r=0 — бесполезен; при r>0 — снижается предел выносливости.

Остаточные напряжения могут понижать несущую способность конструкции, чаще всего не оказывают на нее влияния, а в некоторых случаях даже и повышают ее. Аналитически предел выносливости образца с остаточными напряжениями при r=—1 может быть выражен следующей формулой:

 (5.3)

Где σ-1— предел выносливости при симметричном цикле в отсутствие остаточных напряжений; σост — остаточные растягивающие напряжения в зоне возможного разрушения; σв— предел прочности материала.

При сжимающих σост предел прочности σ-1ост повышается.

Благоприятные остаточные напряжения сжатия можно создать местной пластической деформацией. С этой целью сварные соединения иногда подвергают поверхностной механической обработке: прокатке роликами или, что является более простым и удобным, обдувкой дробью, обработке пневматическим молотком или пучком проволок ударными методами. При этом в поверхностных слоях металла происходит пластическая деформация, которая вызывает наклеп металла, сопровождающийся повышением σт, и, кроме того, образуются остаточные напряжения сжатия. Чем выше коэффициент концентрации напряжений в сварном соединении, тем более эффективно применение поверхностной обработки швов.

Эффект повышения предела выносливости сварных точечных соединений достигается их обжатием ковочным давлением при остывании. Проковка повышает сопротивляемость усталостным разрушениям в 1,4…2,0 раза, а при обработке специальным инструментом и скоростной проковке — в большей степени.

Существует способ повышения усталостной прочности сварных соединений обжатием посредством взрыва. Вдоль швов укладывают трубки со взрывчатым веществом. В результате действия взрывной волны усталостная прочность повышается. Значительное повышение усталостной прочности может быть получено в результате обработки соединений ультразвуковым инструментом

Выносливость сварных соединений может быть увеличена предварительным их нагружением при одновременном устранении вредных растягивающих остаточных напряжений в зоне концентраторов. Иногда считают полезным создание предварительных напряжений в тонкостенных конструкциях и подвержение их вибрации. При этом остаточные растягивающие напряжения уменьшаются на несколько десятков процентов, а сопротивление усталостным нагрузкам повышается.

  1.  Стержневые сварные конструкции
    1.  Балки

Балками называют элементы конструкций, работающие в основном на поперечный изгиб. Они входят в состав рам различного назначения (вагонов, кранов, станин, каркасов зданий), перекрытий, мостов и других металлических конструкций и машин.

Рис. 7.1. Типы поперечных сечений сварных балок:

а) открытый тип сечения; б), в) г) закрытые профили

Наиболее часто применяют сварные балки двутаврового (Рис. 7.1, а) и коробчатого (Рис. 7.1, б, в) профилей, более редко—с профилями, указанными на Рис. 7.1 г. Двутавровые балки хорошо сопротивляются изгибу в плоскости своей наибольшей жесткости, коробчатые—изгибу в разных плоскостях и кручению. Балки с профилями, указанными на Рис. 7.1, удобны в изготовлении, рациональны с позиции использования материала. Поперечные сечения балок иногда изменяются по длине, если последняя значительна. В некоторых случаях изменяют толщину или ширину горизонтальных листов (Рис. 7.2, а) (что более целесообразно). Иногда применяют несколько пар горизонтальных листов, если толщина каждого из них s≥30-35 мм, при этом в менее нагруженных участках число листов уменьшают (Рис. 7.2, в). В некоторых случаях изменяют высоту вертикальных листов (Рис. 7.2, б).

Рис. 7.2 Балки с переменными поперечными сечениями:

а) изменяется толщина листов; б) изменяется высота балки; в) изменяется число листов в поясах

Балки переменного сечения по сравнению с постоянным позволяют лучше использовать несущую способность металла по всей их длине. Они экономичнее по весу в сравнении с балками постоянного профиля, у которых значительная их часть работает при напряжениях, значительно меньше допускаемых. В технологическом отношении балки переменного профиля несколько сложнее. Вопрос выбора конструкций решается с экономических позиций, а иногда и с учетом общей компоновки и эстетики. Значительное большинство типовых балок имеют профиль, постоянный по длине.

При расчете балок встречаются с тремя видами задач.

1. Заданы размеры балки, известны расчетные усилия—изгибающие моменты и поперечные силы. Требуется проверить прочность балки. В этом случае по правилам курса «Сопротивление материалов» определяют нормальные и касательные напряжения.

2. Задана балка и заданы допускаемые напряжения. Требуется определить допускаемую нагрузку на балку. Эта задача также легко решается с использованием общеизвестных формул из курса «Сопротивление материалов».

3. Требуется спроектировать балку, обеспечивающую требуемую грузоподъемность. Эта задача является наиболее трудной по сравнению с первыми двумя. Решать ее надо следующим образом: от заданной нагрузки определяют опорные реакции, строят эпюры поперечных сил Q, изгибающих моментов М по длине и крутящих моментов, если последние имеют место.

При наличии подвижных нагрузок чертят линии влияния опорных реакций, затем Q и М для сечений х=0; х=0,1L;

х=0,2L и т. д. до х=0,5L.

В указанных сечениях вычисляют максимальные значения усилий при самом опасном для них положении подвижных нагрузок. После этого подбирают размеры поперечных сечений балки, обеспечивающие прочность.

  1.  Расчет жесткости и прочности

Балка должна удовлетворять требованию жесткости, т. е. ее прогиб от наибольшей нагрузки не должен превышать предельно допускаемого. Обычно в балках предельная величина отношений fmax/L (где fmax —стрела прогиба балки) регламентируется нормами. Норма жесткости fmax/L для балок разных назначений различна, например, в подкрановых балках она должна быть не более 1/600—1/700, в главных балках междуэтажных перекрытий—около 1/400 и т. д.

Размеры поперечного сечения выбираются в соответствии с рекомендациями методических указаний. Затем осущесталяются проверочные расчеты на жесткость и прочность.

Напряжение от изгиба равно

( 7.1)

где J—момент инерции подобранного сечения.

Касательное напряжение от поперечной силы будет

где Q—наибольшая поперечная сила балки;

S — статический момент полуплощади сечения (симметричного) относительно центра тяжести балки. Эквивалентные напряжения проверяются обычно в тех случаях, когда максимальные значения М и Q совпадают в одном поперечном сечении. Их определяют на уровне верхней кромки вертикального листа

( 7.2)

В большинстве случаев эквивалентные напряжения σэ оказываются меньше σ, вычисленного по ( 7.1).

При всех условиях расчетные напряжения σ, найденные по

( 7.1), или σэ, вычисленные по ( 7.2), не должны превышать 1,05[σ]р.

Сечение считается подобранным рационально, если σ=(0,95-1,05)[σ]р.

Допустим, что к верхнему поясу балки прикладывают сосредоточенные перемещающиеся грузы. Это имеет место в крановых, подкрановых и мостовых балках. При этом определяют прочность вертикального листа с учетом местного напряжения под грузом

где Р—величина сосредоточенного груза;

т—коэффициент, равный 1,5 при тяжелом режиме работы балки (например, в металлургических цехах) и 1,0 при легком режиме (например, в ремонтных);

z—условная длина, на которой сосредоточенный груз распределяется в вертикальном листе;

( 7.3)

Здесь Jn — момент инерции горизонтального листа совместно с приваренным к нему рельсом (если таковой имеется) относительно оси Хп, проходящей через их общий центр тяжести О'.

  1.  Общая устойчивость

Рис. 7.3 К определению расстояния L0 между закреплениями балки в горизонтальной плоскости

Чтобы обеспечить общую устойчивость балки таврового профиля, у которой Jх велик по сравнению с Jу, следует прибегнуть к одному из двух мероприятий.

1. Укоротить свободную длину изгибаемого элемента. Например, если установлены параллельно две изгибаемых балки 1 и 2, то их следует взаимно соединить связями (Рис. 7.3), особенно сжатые пояса. Такие связи ставят в подкрановых балках, мостовых кранах и т. п. Момент инерции двух балок, соединенных связями, во много раз больше момента инерции в горизонтальной плоскости каждой из балок в отдельности.

2. Снизить величину допускаемых напряжений. Проверку напряжений в изгибаемой балке с учетом требований обеспечения общей устойчивости проводят по формуле

Рис. 7.4 К вопросу расчета местной устойчивости вертикальных листов балок.

а) образование напряжений σ и τ, вызывающих потерю устойчивости, б), в) постановка вертикальных ребер жесткости

где φ — коэффициент уменьшения допускаемых напряжений в балке с учетом обеспечения ее устойчивости.

  1.  Местная устойчивость

Помимо проверки общей устойчивости необходимо про верить отдельные элементы балки на местную устойчивость. В сжатых поясах потеря устойчивости происходит, когда напряжения сжатия превышают критические значения.

( 7.4)

Устойчивость вертикального листа в балках из низко углеродистой стали обеспечена, если при отсутствии сосредоточенных сил, перемещающихся по балке,

а при наличии сосредоточенных сил, перемещающихся по балке,

( 7.5)

(σТ выражено в МПа).

 В вертикальных листах балок потеря устойчивости может быть вызвана нормальными сжимающими напряжения ми и комбинацией нормальных и касательных напряжений. Касательные напряжения вызывают в диагональных сечениях нормальные сжимающие растягивающие напряжения.

Для повышения местной устойчивости вертикального листа, т. е. для увеличения , при заданной высоте балки следует уменьшить а, устанавливая ребра жесткости. Постановка ребер жесткости необходима, если не соблюдены условия ( 7.4) и ( 7.5). Обычно вертикальные ребра жесткости конструируют из полос, реже — из профильного материала (Рис. 7.4, в).

Ширину ребра (мм) принимают bр=40мм+hв/30; толщину . Расстояние между ребрами жесткости определяется значением напряжений и размерами балки, но не менее 1,2hв.

Помимо основных ребер жесткости, устанавливаемых по всей высоте вертикального листа балки, в интервалах между ними иногда ставят укороченные ребра жесткости треугольного очертания. Их высота составляет примерно hв/3. Укороченные ребра (треугольники жесткости) иногда ставят при воздействии на пояс балки сосредоточенных грузов большой массы. Как правило, наличие таких ребер нежелательно, так как осесимметричное их расположение относительно оси вызывает при сварке искривление балки в вертикальной плоскости.

В балках большой высоты  иногда ставят горизонтальные ребра жесткости. Их располагают на расстоянии с=(1/4…1/5)hB от верхнего горизонтального листа (Рис. 7.4, в).

При отсутствии в балке подвижных нагрузок рекомендуется постановка ребер жесткости с одной стороны. Это дает экономию металла, но способствует образованию достаточного деформирования от несимметрично уложенных швов.

В коробчатых балках устанавливаются диафрагмы жесткости. диафрагмы допускается приваривать односторонними швами, растянутый пояс допускается не приваривать, при обеспечении плотной пригонки к полке.

  1.  Работа на кручение

В тех случаях, когда балки работают на кручение, применение балок двутаврового профиля становится нецелесообразным.

Напряжение от кручения в незамкнутых профилях (двутавровых, уголковых и т. д.) равно (Рис. 7.5,а)

( 7.6)

где Vi — коэффициент, приближенно равный 0,33.

α=1 для уголка; α=1,3 для двутаврового профиля;

Рис. 7.5 К расчету балки на кручение:

а) двутаврового открытого профиля; б) трубчатого закрытого профиля

ai наибольший размер стороны прямоугольника (вертикального или горизонтального листа);

si—наименьший размер стороны того же прямоугольника;

smax—наибольшая толщина профиля.

Так как момент сопротивления оказывается, как правило, малым, то напряжение τ значительно.

При кручении целесообразно применение сварных балок коробчатого поперечного сечения. Напряжение от крутящего момента с достаточной степенью точности может быть найдено по формуле

Рис. 7.6. К расчету поясных швов сварных балок:

а) швы без подготовки кромок, б) связующие напряжения от изгиба, в), г) примеры сварных соединений в различных профилях балок, д) образование в швах рабочих напряжений τp под сосредоточенной силой

где F—площадь сечения прямоугольника (Рис. 7.5, б), ограниченного штрихпунктирными линиями;

smin — наименьшая толщина вертикального или горизонтального листа.

Так как F велико, то напряжение τ оказывается незначительным.

  1.  Сварные соединения

Горизонтальные листы соединяются с вертикальными поясными швами. Они, как правило, угловые (Рис. 7.6, а) и в редких случаях при наличии сосредоточенных перемещающихся грузов большой величины или действии переменных нагрузок — с подготовкой кромок.

Если балка работает на поперечный изгиб, то в поясных швах возникают связующие нормальные напряжения σ вследствие совместной деформации шва и основного металла, которые в учет не принимаются (Рис. 7.6, б), и рабочие касательные τ (Рис. 7.6, е). Поясные швы обеспечивают работу на изгиб всего сечения как единого целого. Срезывающие усилия на уровне крайних кромок вертикального листа на единицу длины определяются по формуле

где Q—расчетная поперечная сила в рассматриваемом сечении;

J—момент инерции всего сечения;

S — статический момент площади пояса (горизонтального листа и рельса, если таковой имеется) относительно центра тяжести сечения балки.

Касательные напряжения τ от усилия Т являются рабочими. Их роль в балке существенна, несмотря на относительно небольшую величину.

В швах с катетом к касательные напряжения равны

При наличии в вертикальном листе подготовки кромок определение касательных напряжений производится по формуле

При сварке конструкций, у которых толщина листов s>4 мм, величину к принимают также > 4 мм.

Прерывистые швы нецелесообразны, так как при этом затрудняется применение автоматической сварки.

При наличии на балке сосредоточенных перемещающихся грузов поясные швы принимают некоторое участие в передаче нагрузки с горизонтального листа на вертикальный (Рис. 7.6, д). Это имеет место вследствие неплотного их взаимного соприкосновения. Если груз перемещается по рельсу, прикрепленному к поясу балки, то напряжение τр в поясных швах определяется по формуле

( 7.7)

где Р—величина сосредоточенного груза;

n—коэффициент, зависящий от характера обработки кромки вертикального листа (обычно n=0,4);

z—расчетная длина шва, по которой происходит передача давления с пояса на вертикальный лист

.

После вычисления τр по ( 7.7) определяют условное результирующее напряжение

Швы, приваривающие ребра жесткости, как правило, расчетом на прочность не проверяются. Они выполняются угловыми, с катетом к=0,5— 1,0sв, где sв—толщина вертикального листа. Эти швы в опорных сечениях, а также в местах приложения сосредоточенных сил непременно выполняют непрерывными. Ребра жесткости вне опорных сечений в наиболее напряженных волокнах растянутой зоны иногда не привариваются.

Рис. 7.7 Стыки сварных двутавровых балок

a) универсальные (все элементы стыкуются в одном сечении), б) частичные, в) со вставками

Стыки

( 7.8)

Расчет прочности стыков балок (рис. 14-15) производится обычно на изгибающий момент. Напряжение в стыке равно

Если допускаемое напряжение в соединении (в шве или прилегающем к шву металле) [σ’]р принимается меньше [σ]р, то такой стык оказывается неравнопрочным целому сечению. В этом случае стыки целесообразно помещать в сечениях, удаленных от зон максимальных моментов, и ( 7.8) в этих условиях удовлетворяется.

Если σ>[σ']р, а стык должен находиться в зоне, где σ имеет максимальное значение, то допускается произвести местное усиление балки привариванием к ее поясам дополнительных горизонтальных листов, увеличивающих ее момент инерции и момент сопротивления в расчетном сечении. При этом

где W'—момент сопротивления сечения балки усиленной приваркой накладок. К накладкам прибегают редко, так как они являются источником образования концентрации напряжений. В некоторых случаях стыки проектируют косыми. Они неудобны в технологическом отношении. Более рационально применение обычных прямых стыков, выполненных технологическим процессом высокого качества.

  1.  Фермы

Под фермой понимают жесткую неизменяемую конструкцию, состоящую из стержней и соединяющих их шарниров.

Шарнирной фермой называется геометрически неизменяемая система стержней, связанных между собой по концам шарнирами. Система неизменяема, если под действием внешних сил, приложенных к ней, перемещения ее точек происходят лишь вследствие упругих деформаций.

Простейшая жесткая конструкция - это три стержня, соединенные тремя шарнирами, как показано на Рис. 7.1. Двумя из них ферма крепится к опорным узлам. С добавлением к ферме каждых двух новых стержней добавляется и один узел.

Рис. 7.1 Примеры шарнирных стержневых систем. а) – ферма из трех стержней; б) – механизм; в) – построение фермы добавлением к основному треугольнику пар стержней с шарниром; г) – к определению усилий в стержнях; д,е) – примеры статически неопределимых ферм; ж) – ферма с полигональным верхним поясом и треугольной решеткой; з) – форма с полигональным нижним поясом и раскосной решеткой.

Четыре стержня, соединенные, как показано на Рис. 7.1 б), представляют собой механизм.

Фермы со сварными соединениями не представляют собой шарнирных систем. Однако экспериментальные исследования показывают, что распределения усилий в фермах со сварными соединениями мало отличаются от распределения усилий в фермах, составленных из стержней, соединенных шарнирами. Поэтому сварные фермы условно рассматриваются как шарнирные системы.

Точки соединений стержней называются узлами фермы. Стержни обозначаются узлами, между которыми они заключены.

Из основного треугольника можно получить новые неизменяемые системы ферм последовательным добавлением двух стержней с шарниром. Фермы со структурой, полученной последовательным добавлением к основному треугольнику по два стержня с шарниром, называются простейшими. В дальнейшем мы будем рассматривать только простейшие фермы.

  1.  Геометрическая неизменяемость и статическая определимость ферм

Допустим, что простейшая ферма имеет закрепления, свойственные статически определимым системам, например одну неподвижную, а другую подвижную опоры. Определим в этой ферме соотношение между количеством стержней и шарниров (Рис. 7.1 в).

Обозначим число стержней фермы через i (кроме стержней, входящих в состав опорных закреплений), а число шарниров — через k.

На образование основной треугольной фермы требуются три стержня и три шарнира. Таким образом, количество стержней, не входящих в состав основного треугольника, составляет (i—3), а количество шарниров, не входящих в состав этого треугольника,— (k—3).

Так как образование ферм производится из основного треугольника последовательным добавлением двух стержней и одного шарнира, то

,

откуда

Это является необходимым условием геометрически неизменяемой системы. Для простейших ферм оно является не только необходимым, но и достаточным.

Найдем условия статической определимости ферм.

Для каждого узла фермы могут быть написаны два условия равновесия для определения неизвестных усилий в стержнях ,.

Если число узлов фермы равно k, то число уравнений равновесия равно 2k (Рис. 7.1 в).

Из указанных 2k уравнений должно быть определено i неизвестных усилий в стержнях, а также три неизвестные реакции, приложенные в опорах.

Таким образом, необходимые условия геометрической неизме-няемости совпадают с условием статической определимости ферм, имеющих три стержня в опорных закреплениях.

Если количество стержней фермы i превышает (2k-3), то усилия во всех стержнях фермы не могут быть определены при помощи уравнений статики. В этом случае необходимо использовать уравнения упругих деформаций.

Системы ферм, изображенные на Рис. 7.1 г), ж), з), статически определимы; на Рис. 7.1 д) — система статически неопределима, так как число стержней превышает (2k-3). Ферма, изображенная на Рис. 7.1 е), также статически неопределима, так как она имеет одно лишнее закрепление в опоре.

  1.  Классификация ферм

Фермы имеют верхний и нижний пояса, которые соединяются между собой решеткой. Вертикальные элементы решетки называют стойками; наклонные — раскосами.

Узлы нижнего пояса нумеруют 0, 1, 2 ...; верхнего — 0’,1’2’ ... . Стержни и усилия, возникающие в них, обозначают цифрами, определяющими рассматриваемый элемент.

Стержни 0'1', 1,2', 2'3' и т.д. составляют элементы верхнего пояса фермы (рис. 3.1 г).

Стержни 01, 12, 23 — элементы нижнего пояса (панели).

Стержни 11', 22', 33' и т. д. — стойки.

Стержни 01', 1'2', 2'3' и т. д. — раскосы.

Пример ферм с параллельными поясами изображен на Рис. 7.1 г); с полигональным верхним поясом — на Рис. 7.1 ж); с полигональным нижним поясом — на Рис. 7.1 з). Решетка ферм, изображенная на Рис. 7.1 ж), называется треугольной, а на Рис. 7.1 з) — раскосной.

В зависимости от назначений фермы называются стропильными, поддерживающими кровлю зданий, мостовыми, крановыми, вагонными и т. п.

  1.  Соединения ферм в геометрически пространственную неизменяемую систему

Инженерное сооружение очень редко состоит из одной фермы, чаще применяют парные фермы, например, в кранах, вагонах, железнодорожных мостах, а во многих случаях ставят ряд ферм. При перекрытии проемов зданий фермы соединяют между собой стержнями, которые составляют связи. Связи, расположенные в плоскостях поясов, называют продольными, в плоскостях решетки — поперечными.

В своей совокупности плоские фермы со связями образуют пространственную геометрически неизменяемую систему, которая может быть статически определимой или при наличии избыточного количества стержней статически неопределимой.

  1.  Определение усилий стержней фермы аналитическим методом

Усилия стержней фермы определяются по правилу РОЗУ: разрез фермы; отбрасывание одной части; замена стержней силами; условия равновесия отрезанной части.

Рис. 7.8 Пример определения усилий в стержнях фермы методом вырезания узлов

Разрезы производят методами вырезания узла и рассечения фермы. В месте разреза к стержням прикладывают неизвестные силы и направляют стрелки от сечений. Растягивающие усилия считают положительными. Допустим, что после решения уравнений статики искомое неизвестное усилие имеет отрицательный знак. Это указывает на то, что знак усилия первоначально был выбран неправильно. Стержень оказывается не растянутым, а сжатым.

Определение усилий в стержнях ферм методом вырезания узлов удобно в следующих случаях:

1) в узле сходятся два стержня (Рис. 7.8 а), при этом усилия находят из уравнений ΣX=0, ΣY=0.

2) в узле сходятся три стержня, два из них являются продолжением один другого (Рис. 7.8 б), усилие в третьем стержне определяют проектированием всех сил на направление, перпендикулярное х;

3) в узле сходятся несколько стержней, при этом все усилия, кроме двух, уже найдены какими-либо другими приемами.

Если в узле сходятся два стержня и отсутствуют внешние нагрузки, то усилия в обоих стержнях равны нулю. Спроецируем все силы на вертикаль, ΣY=0 откуда N1=0 (Рис. 7.8 в), из условия ΣX=0 следует, что N2=0.

Если в узле сходятся три стержня при условии, что два являются продолжением один другого (Рис. 7.8 г) и в узле отсутствует внешняя нагрузка, то усилие в третьем стержне равно 0. Проецируем силы на направление у, перпендикулярное стержням 1 и 2, ΣY=0.

Убеждаемся в правильности того, что продольное усилие в третьем стержне N3=0.

Легко показать, что в системе, изображенной на Рис. 7.8 д, усилия во всех стержнях, кроме 0'1' и 01', равны нулю, рассмотрите равновесие узлов 4', 4, 3, 3' и т. д., а в системе на Рис. 7.8, е усилия в стержнях 00', 11', 22', 33', 44', 0'1', 3'4', 1'2, 23' равны нулю при заданных условиях нагружения.

При определении усилий в стержнях фермы методом ее рассечения (Рис. 7.9 а) необходимо составить уравнения равновесия в виде ΣM1=0; ΣM2 = 0; ΣMg=0.

где 1, 2 и g— моментные точки.

Точки называют моментными, если они определяются пересечением двух из перерезанных стержней фермы.

Моментная точка 1' лежит на пересечении стержней 1' 2' и 1'2; точка 2 — на пересечении 1'2 и 12; точка g— на пересечении 12 и 1'2'.

Если рассматриваемые разрезанные стержни параллельны, например стержень 01 и 0’1’ (Рис. 7.9, б), то моментная точка g перемещается в бесконечность. При этом статические уравнения равновесия следует написать в форме

Каждое уравнение содержит одно неизвестное, так как остальные неизвестные усилия образуют относительно моментной точки моменты, равные нулю.

Определим усилия в стержнях фермы (Рис. 7.9, в) с параллельными поясами.

Вследствие симметрии фермы и нагрузки опорные реакции равны между собой:

(1.1)

Разрезаем третью панель фермы (разрез В – В).

Пишем условие равновесия отрезанной левой части фермы, нагруженной реакцией А, силами Р и усилиями стержней 2'3', 23 и 23' в виде:

Рис. 7.9 Определение усилий в стержнях фермы:

а – ферма с непараллельными поясами; б, в - ферма с параллельными поясами

(1.2)

откуда

(1.3)

где  –момент сил, расположенных слева от разреза,

относительно точки 3' при учете фермы как сплошной балочной системы.

Напишем условие:

;

(1.4)

.

(1.5)

где — момент сил, находящихся слева от разреза относительно точки 2.

Напишем условие:

3,5PPPP +23'sin α = 0

(1.6)

(1.7)

где — поперечная сила от сил, расположенных слева от разреза при рассмотрении фермы как сплошной балочной системы.

Производим подобные разрезы по второй и первой панелям.

Подобным же образом находим усилия в остальных стержнях поясов и раскосов.

Усилия в стойках находим методом вырезания узлов.

Вырезаем узел 0'. Тогда

(1.8)

Откуда 0'0 = - P

Вырезаем узел 1. В этом узле нет сил, поэтому из условия  =0 находим 11'=0.

Вырезаем узел 2'. При этом имеем

.

(1.9)

Откуда 22' = - P

Легко показать, что распределение усилий в стержнях поясов сквозных ферм с параллельными поясами подобно распределению изгибающих моментов в балочных сплошных конструкциях. Нижние пояса растянуты, верхние сжаты при нагрузках, изображенных на рис. 8.3, в. Усилия в стержнях поясов возрастают от опор к середине пролета.

Распределение усилий в раскосах сквозных ферм с параллельными поясами подобно распределению поперечной силы в балочной сплошной конструкции. Усилия в раскосах имеют наименьшую величину в середине пролета. Усилия возрастают от середины пролета фермы к ее опорам.

  1.  Сведения из строительной механики
    1.  Определение расчетных усилий в балках методом линий влияния

Метод линий влияния принят при расчете балок, ферм, рамных конструкций и особенно при расчете мостовых, крановых и других инженерных сооружений с подвижной нагрузкой.

Линия влияния выражает зависимость усилия (или деформации) в каком-либо заданном сечении балки или элементе фермы от положения груза на них. В практических расчетах их всегда строят от одного груза, равного единице, и после этого построения используют для определения усилий (или деформаций) в изучаемом сечении или элементе при любом заданном загружении от нескольких сосредоточенных сил или распределенных нагрузок.

Линии влияния опорной реакции в однопролетной балке с шарнирными опорами.

Линия влияния опорной реакции балки выражает зависимость величины реакции от положения груза, равного единице, на балке.

Рис. 8.1 К построению линии влияния опорных реакций и моментов в разных сечениях балки цифрами на рис д—з указаны наибольшие моменты в сечениях 0,5L, 0,4L и т д.

Обозначим расстояние груза до левой опоры через х, пролет балки—через L (Рис. 8.1, а).

Реакция

Реакция А определяется уравнением наклонной прямой (Рис. 8.1, б):

при х = 0 : А = 1:

при х = L : А = 0;

Подобным же образом строится линия влияния реакции В (Рис. 8.1, б).

Линии влияния изгибающего момента М. 

Линия влияния изгибающего момента М выражает зависимость величины момента в заданном сечении от положения груза, равного единице, на балке.

Допустим, что груз находится справа на расстоянии x от опоры (Рис. 8.1, б).

При этом изгибающий момент равен:

Построим линию влияния момента М (Рис. 8.1, а) из условия, что

при х = 0 : Мa = 1·а;

при х = L : Мa = 0.

Так как было сделано предположение, что груз находится справа от сечения а, то построенная прямая верна лишь на участке xа.

Допустим, что груз находится слева на расстоянии а от опоры.

Изгибающий момент целесообразно выразить в этом случае через величину правой опорной реакции  

где В—опорная реакция на правой опоре.

При х = 0 : Ма = 0;

при х = L : Мa = L-a.

Так как было предположено, что груз находится слева от сечения а, то построенная прямая верна лишь на участке х≤а.

Подобным образом линии влияния М строятся для разных сечений балки. Ординаты линий влияния М имеют размерность длины.

Линия влияния поперечной силы Q выражает зависимость

величины поперечной силы в заданном сечении а от положения груза, равного единице, на балке.

Допустим, что груз находится справа от сечения а (Рис. 8.2 , а)

Прямая верна на участке x≥а.

Допустим, что груз находится слева от сечения а. При этом

при х = 0 :  = 0;

при х = I :  = - 1.

Рис. 8.2 К построению линий влияния поперечной силы в балках.

Эта линия верна на участке х≤а, под исследуемым сечением она меняет знак.

Ординаты линий влияния  безразмерны.

Использование линий влияния для определения усилий от системы сосредоточенных сил Р и равномерно распределенной нагрузки q.

Построенной линией влияния пользуются для определения усилия в заданном сечении балки от различной комбинации сосредоточенных и сплошных нагрузок.

Предположим, что для сечения на расстоянии а балки построена линия влияния некоторого усилия R, имеющая вид, показанный на Рис. 8.3,а.

Балка нагружена сосредоточенными силами , ,  и равномерной нагрузкой q; на участке L—а.

Рис. 8.3 Определение усилий от Р и q на основе построенных линий влияния:

а) общее положение; б), в) к численному примеру расчета

Ординаты линии влияния под силами , ,  обозначим соответственно , ,  .

Пользуясь принципом независимости действия сил, находим усилие в сечении

=++=Σ

( 8.1)

Усилие от равномерной нагрузки найдем, заменив сосредоточенную нагрузку бесконечно большим количеством бесконечно малых сосредоточенных сил

(8.11)

где Ω — площадь линии влияния на длине загруженного участка.

Полное усилие:

R=ΣPiyi+

(8.12)

R выражает собой продольную силу N, поперечную силу Q, момент М и т. д., в зависимости от построения линий влияния.

  1.  Линии влияния усилий стержневых ферм

Рис. 8.4

При загружении ферм движущимися нагрузками, например тележкой крана, целесообразно определять усилия в стержнях методом линий влияния. Линии влияния усилий стержней фермы выражают зависимость величины усилий в стержнях от положения груза, равного единице, на ферме. Таким образом, для каждого стержня фермы сроится соответствующая линия влияния.

Груз может перемещаться как по верхнему, так и по нижнему поясу фермы в соответствии с загружениями реальными силами.

По продольным брускам перемещается груз, равный единице, воспринимаемый фермой через поперечные брусья. Таким образом, осуществляется передача нагрузки на ферму по узлам.

В действительности такая надстройка нередко осуществляется в сооружениях. Если же она в действительности отсутствует, то для построения линий влияния продольных усилий поясов следует допустить, что она все же имеет место.

Рассмотрим линии влияния усилий в стержнях фермы с параллельными поясами, которая опирается на две опоры (Рис. 8.4, а).

Производим последовательно разрезы III - III и II - II (Рис. 8.4, б).

Рис. 8.5 Линия влияния усилия в стержне 23.

Для построения линии влияния 23 рассмотрим уравнение равновесия М3’=0.

При грузе, находящемся справа от разрезанной панели III - III, уравнение равновесия для левой части фермы будет

A∙3d – 23 h = 0;

При х = 0 А =1 и

При х = l А = 0 13 = 0

Проводим правую линию влияния 23, которая верна при условии, что груз находится на участке от узла 6' до узла 3'.

При грузе, находящемся слева от разрезанной панели III - III, уравнение равновесия для правой части фермы будет

B∙3d – 32∙h = 0 откуда  

Аналогичным образом находим левую линию влияния, которая верна при грузе, находящемся на участке от узла 0' до узла 2'.

При перемещении груза от 2' до 3' линия влияния изменяется по закону прямой, изображенной на Рис. 8.5, являющейся продолжением левой линии влияния.

Рис. 8.6 Линия влияния усилия в стержне 2'3'.

Аналогичным образом пишем условия равновесия М2=0 и строим линию влияния 2'3' (Рис. 8.6).

Если груз находится справа от 3' то 2’3’∙h+A∙2d=0 откуда 2’3’=, в т. 0’ А=Р=1, в т. 6’ А=0.

Если груз находится слева от 2' то 2’3’∙h+В∙4d=0 откуда 2’3’=, в т. 6’ В=Р=1, в т. 0’ В=0.

Рис. 8.7 Линия влияния усилия в стержне 23'.

Определение усилия в раскосе 23'.

При грузе, находящемся справа от разрезанной панели, уравнение равновесия для левой части фермы запишется так:

При х = 0: 23’=;

При х = L: 23’ = 0

Проводим правую линию влияния 23', которая верна при грузе, находящемся на участке от узла 6' до узла 3' (Рис. 8.7).

При грузе, расположенном слева от разрезанной панели, уравнение равновесия для правой части фермы запишется так:

 

При х=0: 3’2=0

При х=l:

Левая линия влияния верна при грузе, находящемся на участке 0'2'.

Линия влияния 1'2' строится из рассмотрения условия равновесия узла 2'

ΣX = 0 откуда следует, что 2’1’=2’3’.

Линия влияния 0’1’ строится с учетом условия равновесия узла 0'

ΣX = 0 откуда следует, что 0’1’=0.

Рис. 8.8 Линия влияния усилия в стержне 12.

Для построения линии влияния 12 проводится разрез II - II и пишутся условия равновесия ΣM1'=0.

Очертание линии влияния 12 показано на Рис. 8.8.Из условия равновесия ΣХ=0 в узле 1 следует, что линия влияния 10 равна линии влияния 12.

 

Рис. 8.9 Линия влияния усилия в стержне 1'2.

Для построения линии влияния 1'2 следует использовать условие равновесия ΣУ=0 в сечении между 1 и 2.

При грузе, находящемся справа от разрезанной панели

A – 1’2sin α = 0

При х=0: ;

при х=L: 1'2=0.

проводим правую линию влияния 1’2, которая верна при грузе, находящемся на участке от узла 6’ до узла 2' (Рис. 8.9).

При грузе, находящемся слева от разрезанной панели IIII

B + 21’ sinα = 0

При х=L: 21’

при х =0: 21’=0.

Проводим левую линию влияния на участке 0’1’. При перемещении груза от 1' до 2' линия влияния определяется уравнением прямой, изображенной на Рис. 8.9 пунктирной линией.

Аналогичным путем строим линию влияния усилия в стержне 01'.

Построим линию влияния усилия в стойке 11'

Из условия равновесия сил, приложенных в узле 1, ΣY =0 вытекает, что усилие 11'=0.

Ординаты линии влияния стойки 33' также равны нулю.

Рис. 8.10 Линия влияния усилия в стержне 22'.

При построении линии влияния усилия в стержне 22' следует рассмотреть условия равновесия ΣY=0 в узле 2'.

Если груз находится вне второй и третьей панелях, то усилие 2'2=0.

Если груз находится в узле 2', то условие ΣY =0 пишется таким образом: —2'2—1=0, при этом 2'2=—1 (Рис. 8.4, и).

При перемещении груза на участках 1'2' и 23' линия влияния имеет очертание треугольника (Рис. 8.10).

Рис. 8.11 Линия влияния усилия в стержне 22'.

Линия влияния усилия в опорной стойке 00' находится из условия равновесия ΣY =0 в узле 0' (Рис. 8.4, з).

При отсутствии груза на первой панели 0'0=0.

При нахождении груза в узле 0' уравнение равновесия запишется так:

-1-0’0 = 0 откуда 0'0 = — 1

При перемещении груза от узла 0 до узла 1 линия влияния усилия в стержне 00' определяется уравнением прямой, изображенной на Рис. 8.11 пунктирной линией.

  1.  Определение усилий в стержнях фермы при нахождении груза на поясе

Выше рассматривались случаи, когда перемещающийся груз, от которого строились линии влияния, не вызывал местного изгиба в поясе.

Допустим, что нагрузки приложены не в узлах ферм, а по длине панели. При этом нагрузки следует разложить по узлам обычным путем, от них определять продольные силы в стержнях фермы.

В нагруженных панелях помимо продольных сил действуют поперечные силы Q и изгибающие моменты М, которые определяют при рассмотрении нагруженного пояса фермы в качестве балки.

  1.  Сварочные напряжения и деформации

Помимо напряжений и деформаций, возникающих в деталях под действием приложенных нагрузок, в них могут быть так называемые собственные напряжения, которые существуют в телах даже при отсутствии воздействия каких-либо внешних сил. Причины образования собственных напряжений весьма многообразны. Одной из них является неравномерный нагрев тела.

  1.  Образование термических напряжений и деформаций

Свободный и стесненный нагрев стержня

Рис. 9.1 Схема образования напряжений и пластических деформации при нагреве стержня: а) стержень; б) диаграмма σ=f(ε) идеально упруго-пластичного металла

Рассмотрим вначале образование напряжений в стержне, который вставлен в массивную жесткую деталь без зазора и нагрет до температуры Т (Рис. 9.1, а). Очевидно, что в нем возникнет напряжения сжатия. Если величина деформации αT значительна (Рис. 9.1, б), то напряжения достигнут предела текучести σT, и в стержне произойдут пластические деформации. Величина напряжений при этом будет соответствовать напряжению в точке А (Рис. 9.1, б). При остывании стержня напряжения сжатия в нем уменьшаться, следуя закону упругой разгрузки (прямая АВ), и в точке В окажутся равными нулю. При дальнейшем остывании между стержнем и деталью образуется зазор, где εос — остаточное относительное укорочение стержня, возникшее в результате пластической деформации при нагреве. Если бы стержень был прикреплен к детали, то в нем после остывания возникли бы собственные напряжения растяжения.

Нагрев тонкой пластины уложенным по середине проводником тока.

Образование собственных напряжений растяжения проследим на примере длинной узкой пластины (Рис. 9.2, а), посередине которой уложен проводник, выделяющий тепло и нагревающий пластину до некоторой температуры Т, кривая которой показана на Рис. 9.2, б. Если бы волокна пластины длиной l не были связаны между собой, то они удлинились бы на абсолютную величину αТ. Будучи связанными между собой, все волокна фактически удлиняются на относительную величину (Рис. 9.2, б).

Положение прямой линии от m—т находится из условия уравновешенности эпюры: площади, заключенные между прямой m—т и кривой аТ (показаны штриховкой), в сумме с учетом их знака должны давать величину, равную нулю. При этом по оси пластины образуются напряжения сжатия, а по ее краям — напряжения растяжения. Допустим, что максимальная деформация εmax в области сжатия превысила величину εT, а материал пластины является идеально упруго-пластичным (см. диаграмму на Рис. 9.1, б). Тогда эпюра упругих деформаций несколько изменит свой вид (Рис. 9.2, б). Прямой штриховкой на Рис. 9.2, б показаны упругие деформации, а косой — пластические. Положение прямой т'—т' при этом изменится, так как эпюра упругих деформаций должна быть уравновешена вследствие уравновешенности собственных напряжений в пределах всего поперечного сечения пластины.

Рис. 9.2 Температурные и остаточные напряжения в пластине при симметричном нагреве (плюс означает образование растягивающих напряжений, минус — сжимающих) : а) пластина; б) временные деформации при нагреве; в) временные деформации при остывании; г) остаточные деформации

Волокна, не испытавшие пластической деформации, при остывании стремятся сократиться до длины, которую они имели перед нагревом. Волокна, испытавшие пластическую деформацию при нагреве, после остывания укоротились бы на величину εпл, если бы при этом они не были связаны с остальными волокнами. Эпюра остаточных напряжений показана на Рис. 9.2, г кривой линией. Будучи связанными между собой, волокна сокращаются на величину σост (Рис. 9.2, г). При этом по оси образуются собственные напряжения растяжения, а по краям — напряжения сжатия. Эти напряжения носят название остаточных, в отличие от напряжений при нагреве, которые называются временными, или температурными. Зона шириной 2bП (Рис. 9.2, г), где происходили при нагреве пластические деформации, носит название зоны пластических деформаций.

Для движущегося источника нагрева

Рис. 9.3 Схема образования временных и остаточных продольных напряжений σОСТ в процессе нагрева кромки пластины движущимся источником тепла при различных значениях предела текучести металла: а) при упругой деформации; б) σТ = 40 кГc/мм2; в) σТ = 20 кГc/мм2

Если источник нагрева перемещается, то образование собственных деформаций и напряжений происходит значительно сложнее, чем в двух предыдущих случаях. Допустим, по краю пластины перемещается источник нагрева, например в виде газового пламени, который создает в пластине установившееся температурное поле. Допустим также, что нам известна кривая изменения сжимающих напряжений σх в крайнем волокне пластины (Рис. 9.3, а). Если напряжения σх не достигают σТ, то после полного остывания остаточные напряжения будут отсутствовать.

Предположим, что по такому же режиму нагревается кромка металла с пределом текучести σТ=40 кГc/мм2 (Рис. 9.3, б). При этом будем полагать, что металл не нагревается выше температуры, при которой происходит снижение предела текучести, а модуль упругости Е остается неизменным. Напряжения σX до точки a1 (Рис. 9.3, б) будут возрастать, оставаясь меньше предела текучести. После точки a1 будет происходить пластическая деформация, а напряжения в предположении идеальной пластичности будут оставаться равными пределу текучести σТ=40кГc/мм2. В точке B1 сжимающие напряжения начнут уменьшаться, следуя по кривой B1C1D1, эквидистантно кривой ВD. В точке C1 напряжения окажутся равными нулю, а затем перейдут в растягивающие. После полного остывания возникнут растягивающие напряжения σОСТ<σТ=40кГc/мм2.

Если предположить, что по такому же режиму нагревается кромка металла с меньшим пределом текучести, например σТ =20 кГ/мм2, то картина образования временных и остаточных напряжений изменится (Рис. 9.3, в). Пластические деформации начнутся раньше и будут протекать вплоть до точки В2. Затем напряжения сжатия начнут уменьшаться и перейдут в растягивающие. В точке N напряжения достигнут предела текучести и вплоть до полного остывания в металле будет происходить пластическая деформация. Остаточные собственные напряжения растяжения будут равны пределу текучести σТ = 20 кГ/мм2.

В приведенных выше примерах рассматривались одноосные собственные напряжения 1-го рода, вызванные неравномерным нагревом и термопластической деформацией. В ряде случаев напряжения являются двух- или трехосными. Образование собственных напряжений может происходить вследствие объемных изменений, вызванных структурными превращениями.

  1.  Свойства металлов при высоких температурах. Распределение температур при сварке

Определение деформаций и напряжений в ряде случаев производится с учетом зависимости предела текучести σТ (Рис. 9.4, б) и модуля упругости Е от температуры (Рис. 9.4, а).

В упрощенных расчетах удобнее пользоваться схематизированной диаграммой зависимости предела текучести от температуры. На Рис. 9.4, б эти схематизированные зависимости показаны пунктирными линиями. Для малоуглеродистых сталей используется зависимость l с изломом при Т=500°С и нулевым значением σ при 600° С, для титанового сплава—прямая 2.

Зависимость σ=f(ε) обычно принимается, как для идеально упругопластичного тела (см. диаграмму на Рис. 9.1, б). Это объясняется тем, что при сварке пластические деформации, как правило, невелики и упрочнением металла можно пренебречь.

 

Рис. 9.4 Механические свойства металлов при высоких температурах:

а) модуль упругости малоуглеродистой стали с 0,1% С— 1 и технического титана — 2, б) предел текучести; сплошные кривые—действительные зависимости, пунктирные—схематизированные зависимости

Для описания температурных полей при расчете деформаций и напряжений можно пользоваться теорией тепловых процессов при сварке. Эта теория дает хорошее совпадение расчетов с опытами при температурах ниже 800—900°С, т. е. в той области, где обычно и производится вычисление температуры для определения собственных напряжений.

  1.  Образование деформаций. Напряжений и перемещений при сварке

Процесс сварки обычно сопровождается неравномерным нагревом, расширением металла и пластическими деформациями, что приводит к образованию собственных деформаций и напряжений. Собственные напряжения создают так называемые внутренние усилия в деталях и конструкциях; под действием этих сил могут возникать значительные перемещения отдельных точек сварных конструкций вследствие их укорочения, изгиба, закручивания и т. п.

Собственными деформациями металла и напряжениями в нем обычно интересуются, когда требуется установить изменение свойств металла и его состояния для оценки прочности при статических и переменных нагрузках, коррозионной стойкости, технологической прочности и др.

Остаточные перемещения в сварных конструкциях, вызванные процессом сварки, могут влиять на такие эксплуатационные свойства, как точность, сопротивление потоку жидкости или газа, устойчивость, а также на процесс сборки при производстве сварных конструкций. Перемещения могут заметно искажать заданные проектные формы изделий и ухудшать их вид.

Рис. 9.5 Определение продольных деформаций и напряжений при сварке пластин (по Г. А. Николаеву): а) распределение температур и деформаций в сечении I—I; б) распределение температур в пластине; в) остаточные деформации и напряжения

Обычно деформации и напряжения, а также перемещения определяют отдельно, используя различные расчетные методы и приемы.

Рассмотрим образование деформаций и напряжений при однопроходной сварке встык двух пластин в предположении, что напряжения одноосны, соблюдается гипотеза плоских сечений (поперечные сечения свариваемых пластин не искривляются), идеально упруго-пластический материал имеет зависимость σТ =f(T), представленную на Рис. 9.4, б ломаной линией 1.

В методе Г. А. Николаева, рассматривается распределение деформаций и напряжений в сечении II, где область, ограниченная изотермой 600° С, имеет наибольшую ширину (Рис. 9.5, б). Температурные деформации волокон пластины равны величине аТ. Так как волокна связаны между собой и деформируются совместно, то в них возникают дополнительные деформации. На Рис. 9.5, а деформации укорочения показаны со знаком минус, а деформации удлинения — со знаком плюс. Пластические деформации показаны косой штриховкой, упругие — прямой. Прямая m—m' на Рис. 9.5, а показывает положение сечения пластины. Она проводится с учетом условия уравновешенности эпюры упругих деформаций.

Пластические деформации укорочения являются причиной образования остаточных напряжений. На Рис. 9.5, в они показаны линией add'a'. Величина пластических деформаций в зоне с температурой нагрева выше 600° С определяется условно. Деформации при Т>600°С в расчет не вводятся ввиду того, что при этих температурах предполагается отсутствие напряжений. Поэтому на Рис. 9.5, а они ограничены линией gd.

Эпюра add'a' на Рис. 9.5, выражает укорочение волокон, которое произошло в зоне пластических деформаций в период нагрева металла. Это укорочение волокон обнаружится лишь при остывании металла и приведет к образованию растягивающих напряжений.

Для определения остаточных деформаций необходимо провести прямую п—п' так, чтобы площадки у положительной и отрицательной части эпюры были равны. Если бы волокна при остывании сокращались беспрепятственно, то их укорочение соответствовало бы кривой add'a'. Связь с соседними волокнами вызывает появление растягивающих напряжений, которые, достигнув σТ, создают на стадии остывания пластические деформации удлинения. Эти деформации удлинения представлены эпюрой fdd'f (Рис. 9.5, в). Умножив ординаты эпюры деформаций на модуль упругости Е, получим эпюру остаточных напряжений (заштрихованная часть на Рис. 9.5, в).

Максимальные значения σ на участке ff равны σТ Зона шириной 2bP носит название зоны растягивающих напряжений» а зона 2bП — зоны пластических деформаций.

При расчетном определении перемещений, возникающих в сварных конструкциях от продольного сокращения металла, используется фиктивная усадочная сила РУС, величина которой в данном случае пропорциональна площади зоны остаточных пластических деформаций aff'a'

( 9.1)

Так как εпл. ост. в данном случае являются деформациями укорочения и имеют знак минус, то сила Рус является сжимающей. Если учитывать объемные изменения металла в процессе тех фазовых превращений, которые происходят при температурах ниже 600° С, о чем сказано далее, то в некоторых зонах по ширине сварного соединения величина  будет иметь знак плюс, а интеграл  ( 9.1) может дать растягивающую фиктивную силу.

Под действием усадочной силы пластина испытывает относительную продольную деформацию εПР (Рис. 9.5, в), а на всей длине Lукорочение ΔПР= LεПР.

При сварке напроход весьма жесткой сварной конструкции

 

( 9.2)

где q - эффективная мощность (в ваттах),;  - скорость сварки, мм/с.

Формула  

( 9.2) пригодна также для определения  от газовой резки. Коэффициент В определяют экспериментально путем сварки и обмера образцов. При сварке алюминиевых сплавов В = 140...150 для стыковых швов и 160...170 для тавровых с одним угловым швом. Для конструкционных сталей установлена зависимость В от погонной энергии:

здесь s - толщина свариваемых пластин (средняя толщина при сварке пластин разной толщины).

При многопроходной сварке зоны пластических деформаций от следующих проходов частично перекрывают предыдущие, поэтому каждый проход дает дополнительную силу  порядка 15 % от возникающей после первого прохода. Для прерывистого шва  пропорциональна отношению длины участка шва к шагу прерывистого шва. При сварке «от середины»  на 15...20 % меньше, чем при сварке напроход.

В случае ограниченной жесткости вносится поправка, увеличивающая значение  по сравнению с .

Рис. 1.35. Сварная балка таврового профиля под действием усадочной силы, вызывающей ее изгиб и укорочение

От этой же оси отсчитывают эксцентриситет е от силы . Для учета ограниченной жесткости балки вносят поправку

в значение, найденное по формуле  

( 9.2) (IХ, IY -моменты инерции сечения относительно двух главных центральных осей; ех, еу - эксцентриситеты приложения усадочной силы относительно тех же осей; S - площадь сечения; σТ -предел текучести материала). Если знаменатель дроби в формуле < 0,5, то он принимается равным 0,5. Формула справедлива, когда площадь зоны пластических деформаций, равная, не превышает 25...30 % от всей площади поперечного сечения F.

  1.  Сварочные напряжения и деформации в различных материалах

Остаточные напряжения в сварных соединениях аустенитных сталей, алюминиевых и титановых сплавов, не испытывающих структурных превращений (рис. 6-6, а, кривая 7), по характеру распределения аналогичны малоуглеродистым сталям. Однако, если в малоуглеродистых и аустенитных сталях максимальные остаточные напряжения близки к пределу текучести металла, то в алюминиевых и титановых сплавах они, как правило, составляют (0,6—0,8)σТ.

В легированных сталях при нагреве выше температуры А1, а затем при охлаждении происходят структурные превращения, сопровождающиеся изменением объема металла. На Рис. 9.6, а кривая 2 показывает изменение линейного размера на стадии охлаждения в случае, если металл был нагрет выше температуры структурных превращений,- До температуры, равной примерно 300° С (рис. 6-6, а, кривая 2), происходит укорочение металла, а затем в интервале температур 300—100° С, несмотря на уменьшение температуры, происходит увеличение объема металла, вызванное структурным превращением. Остаточные напряжения в сварном соединении из такой стали имеют сложный характер (рис. 6-6,6). Например, при сварке легированной стали аустенитными электродами остаточные напряжения в шве будут примерно равны пределу текучести аустенитного металла (зона l1). К шву примыкает зона l2, которая нагревалась выше температуры фазовых превращений. В ней вследствие расширения металла при сравнительно низких температурах (кривая 2 на Рис. 9.6, а) возникли остаточные напряжения сжатия. Зона l3 также нагревалась до высоких температур, но ниже температуры фазовых превращений. В ней при нагреве происходили значительные пластические деформации укорочения, в результате которых после остывания возникли остаточные напряжения растяжения, достигающие предела текучести легированной стали. В этой зоне при нагреве и остывании не было структурных превращений, сопровождающихся изменением объема. Зона l4 — зона упругих деформаций. Знак напряжений в зоне l4 зависит от распределения деформаций и напряжений в зонах l1, l2 и l3. Например, если присадочный металл имеет тот же химический состав, что и основной легированный металл, в шве вследствие структурных превращений будут остаточные напряжения сжатия. При этом ввиду возможной уравновешенности эпюры остаточных напряжений в пределах зон l1, l2, l3 остаточные напряжения в зоне l4 могут быть близкими к нулю или даже растягивающими. Это указывает на то, что при сварке легированных сталей, испытывающих структурные превращения, возможно получение фиктивной силы РУС, близкой к нулю, или даже растягивающей.

Рис. 9.6 Характерные дилатограммы сталей (а): аустенитной — 1 и перлитной — 2 и распределение остаточных напряжений в среднелегированной стали, сваренной аустенитным швом (б)

  1.  Поперечная усадка

Рассмотрим перемещение кромок при сварке пластин встык с зазором (Рис. 9.7). Металл при нагреве расширяется не только в направлении Ох, но и в перпендикулярном направлении Оу. Характер перемещения края пластины, по кромке которой движется источник тепла, показан кривой v на Рис. 9.7, а. При подходе источника тепла (точка О) кромка интенсивно перемещается (участок CBD), достигая максимального перемещения vMAX в точке О. Затем по мере остывания металла край пластины постепенно возвращается в исходное положение. Чем больше теплоотдача в воздух, тем интенсивнее перемещение кромки. Если свариваются две пластины с зазором (Рис. 9.7, б), то кромка каждой из пластин испытывает поперечное перемещение v. В момент сваривания перемещения достигают максимальной величины vMAX. а взаимное приближение кромок составляет 2 vMAX .

Рис. 9.7 Схема образования поперечной усадки при однопроходной сварке встык

На участке ОА металл обладает небольшим сопротивлением пластической деформации, в результате чего он испытывает удлинение 2(VMAX -VA). В точке A пластическое удлинение металла прекращается и таким образом фиксируется взаимное сближение кромок, равное 2VA. В процессе остывания пластины подтягиваются друг к другу и возникает поперечная усадка ΔПОП=2VA. В пластинах, которые свариваются без зазора, перемещение кромок впереди источника тепла не может осуществляться беспрепятственно. До некоторой точки В (Рис. 9.7, а) происходит упругая деформация; а от точки В до точки D пластическая. Поперечная усадка оказывается меньше, чем при сварке с зазором.

Максимально возможное перемещение кромок при отсутствии теплоотдачи в воздух

( 9.3)

где q – эффективная мощность источника нагрева, вводимая в обе кромки (в каждую вводится q/2);

s толщина пластины;

v — скорость сварки;

αкоэффициент линейного расширения;

сρ – объемная теплоемкость.

Фактически величина поперечного укорочения, как было объяснено выше, меньше теоретически возможного. При электродуговой однопроходной сварке металла встык толщиной до 12—16 мм поперечное укорочение равно

ΔПОП≈(0,5÷0,7)2vMAX

( 9.4)

а иногда и меньше.

Формулой ( 9.4) можно пользоваться также для приближенного определения поперечного укорочения, когда шов укладывается на целую пластину без полного провара, например при сварке внахлестку или втавр. Определение эффективной тепловой мощности qП вводимой в лист толщиной sП, к которому приваривается лист толщиной sP производится по формуле:

( 9.5)

Распределение остаточных напряжений в основных типах сварных соединений исследовано экспериментально и теоретически довольно широко. Продольные остаточные напряжения в сварных соединениях, выполненных внахлестку, угловых и втавр, как по величине, так и по распределению в основном аналогичны напряжениям в стыковых соединениях, т. е максимальные их значения в конструкциях из низкоуглеродистых и аустенитных сталей близки к σТ. Помимо продольных, в сварных однопроходных соединениях возникают также и поперечные остаточные напряжения.

  1.  Неравномерные по толщине пластические деформации

Неравномерные по толщине поперечные пластические деформации образуют угловые перемещения сварного соединения.

При проплавлении целой пластины или выполнения таврового шва угол β зависит от H/S.

При малой глубине провара не приваренная часть сопротивляется усадке проваренной части (пунктирная линия на Рис. 9.8). При H/S близком к единице распределение температуры достаточно равномерно по толщине. В обоих случаях угол β мал. Характер зависимости β (H/S) показан на Рис. 9.8

Рис. 9.8 Зависимость величины угловых деформаций от глубины провара.

  1.  Сдвиговые деформации

Сдвиговые деформации γxy образуют в сварном шве смещения х вдоль оси шва. При сварке в зоне нагрева точки свариваемых пластин перемещаются в направлении оси х.

Впереди источника нагрева они движутся в одном направлении с ним, а позади него - в противоположном. Максимальны перемещения U у кромок, они быстро убывают с увеличением координаты Y.

Рис. 9.9 Перемещения  впереди источника теплоты при его движении по середине пластины (а) или по краю (б)

При прочих равных условиях U зависит от погонной энергии, вводимой в каждую из свариваемых пластин.

Интерес представляет то обстоятельство, что при одинаковых температурных полях максимальные перемещения при вводе тепла в край Uk в 1,5 раза больше, чем максимальное перемещение Uс середины пластины (Рис. 9.9 а,б). Такое явление обычно наблюдается при сварке нахлесточных или тавровых соединений.

Разница между Uk и Uс может быть еще больше, если больше тепла вводится в привариваемый лист чем в полку.

При выполнении нахлесточных и тавровых соединений разница в перемещении:

( 9.7)

зафиксируется швом и сохранится как остаточная. Привариваемые ребро или нахлёстка переместятся после полного остывания в направлении сварки. Значение х при сварке металла толщиной 5-10мм составляет несколько десятых долей миллиметра, но может быть и более миллиметра при сильном разогреве привариваемого элемента.

  1.  Деформации элементов при сварке стыковых соединений с зазором

Сварка стыкового соединения может производиться без прихваток, как с зазором между пластинами, так и без него. Типичным примером сварки с зазором является электрошлаковая сварка. В общем случае в процессе сварки пластин с зазором возникает одновременно несколько видов перемещений.

1. Изгиб полос от неравномерного нагрева их по ширине. Распределение температур Т по ширине пластины показано на Рис. 9.10. Изгиб приводит к раскрыванию сварочного зазора.

2. Перемещения, вызываемые остыванием пластин в заваренной части шва. Сокращение зоны термического влияния в поперечном направлении Oy приводит к поступательному сближению пластин, а главное — к их повороту, который вызывает закрывание зазора.

Рис. 9.10 Изгиб полос от неравномерного нагрева по ширине

3. Перемещения, вызываемые изменением объема металла при его структурных превращениях в процессе сварки. Они могут как открывать, так и закрывать зазор при сварке. Сочетание трёх перечисленных выше видов перемещения могут создавать самые разнообразные изменения зазора в процессе сварки.

Предотвратить поступательное сближение при электрошлаковой сварке закреплением пластин или их скреплением между собой практически невозможно из-за громадных сил усадки, возникающих в свариваемых пластинах.

Структурные превращения типа  сопровождаются уменьшением объема металла, а обратные  — увеличением объема. В процессе сварки, на стадии нагрева металла, между изотермами AC1 и AC3 (Рис. 9.11) в зоне шириной l происходят структурные превращения . Через некоторое время в той же зоне в интервале температур от Тн до Тк идет процесс . В заштрихованной зоне объем металла увеличивается. Пока заштрихованная зона находится в начальной части шва — до середины заваренной части, ее расширение приводит к закрыванию сварочного зазора.

Рис. 9.11 Зоны структурных превращений при сварке

Когда же заштрихованная зона становится ближе к месту сварки, чем к началу шва, поворот пластин от ее расширения будет открывать сварочный зазор.

В сталях с высокой степенью легирования, у которых Тн и Тк низкие, a hс велика, процесс закрывания зазора обычно продолжается, пока длина шва h не превысит 1,5 м.

В низкоуглеродистых и низколегированных сталях, таких, как стали 20 или 20ГС, открытие зазора начинается уже при h=0,6..0,7м.

Изменение величины зазора приводят к изменению формы шва. При электрошлаковой сварке изменение зазора ведёт к изменению режима-скорости сварки и соотношения между основным металлом и прилегающим при формировании шва. Может привести к короткому замыканию между изделием и мундштуком (при раскрытии). Причем предотвратить изменение зазора закреплением, как правило, не удаётся, из - за ограниченных возможностях в толстостенных деталях.

  1.  Деформации в соединениях с кольцевыми швами

В оболочках возникают временные и остаточные перемещения. От временных перемещений при сварке кольцевых швов частично зависят конструкции приспособлений и оснастка. Например, предотвратить радиальные перемещения в тонкостенных оболочках можно прижатием кромок роликами, перекатывающимися впереди сварочной горелки, или использованием охватывающего жесткого кольца. Во втором случае сварку необходимо выполнять изнутри.

Особенностью тонкостенных оболочек по сравнению с другими сварными конструкциями является пониженная жесткость отдельных листовых элементов. Образование и распределение напряжений в продольных однопроходных соединениях цилиндрических обечаек, когда они свариваются с закреплением в приспособлениях, принципиально не отличаются от случая сварки двух листов встык. Вследствие гибкости оболочки поперечная усадка происходит беспрепятственно. Остаточные напряжения практически одноосные. После освобождения короткие обечайки получают местный прогиб f (Рис. 9.12 Деформации от продольных швов в цилиндрических оболочках: а) коротких; б) длинных, а), который иногда составляет более 10—20 мм. При этом в среднем сечении D1< Dном, а у краев D2>Dном. У длинных обечаек (труб) возникает искривление оси (Ошибка! Источник ссылки не найден., б), а на концах появляется овальность.

Рис. 9.12 Деформации от продольных швов в цилиндрических оболочках: а) коротких; б) длинных

В кольцевых швах оболочек, если они свариваются на жестком кольце, после остывания образуются одноосные остаточные напряжения σt , мало изменяющиеся по окружности. Уравновешивание напряжений σt на этой стадии происходит благодаря реакциям q (Рис. 9.13, а) со стороны кольца

q = σt s/r0

После удаления кольца силы q снимаются и вызывают прогиб оболочки (Рис. 9.13, б). На Рис. 9.13, в) показана экспериментальная кривая перемещений цилиндрической оболочки 2r0 =145 см, s=l,5 мм из нержавеющей стали после аргонодуговой однопроходной сварки. Сокращение периметра в зоне шва составляет около 9 мм.

 Рис. 9.13 Образование перемещений в зоне кольцевого шва цилиндрической оболочки: а) при сварке на подкладном кольце; б), в) после удаления подкладного кольца.

Рис. 9.14 Образование несимметричных перемещений в зоне кольцевого шва при сварке цилиндрических оболочек разной жесткости

Прогибы оболочек вызывают напряжения изгиба поперек шва: внутри — растягивающие, снаружи − сжимающие. Происходит также уменьшение растягивающих напряжений в шве. Сокращение оболочек от кольцевых швов возникает также после приварки кольцевых элементов жесткости дуговой или контактной сваркой. Однако не во всех случаях после сварки происходит укорочение шва. Например, в оболочках из алюминиевых сплавов тепло распространяется на значительное расстояние, вызывая подогрев участков, где упругие свойства металла еще не утрачены. Эти участки, расширяясь, вызывают перемещение зоны шва в радиальном направлении. Удлинение и изгиб бывают настолько значительными, что после остывания металла периметр шва оказывается увеличенным по сравнению с исходным состоянием.

При сварке кольцевым швом различных по жесткости элементов радиальные перемещения в момент сваривания оказываются различными. В результате этого образуется ступенька (Рис. 9.14), которая может явиться серьезным дефектом, снижающим прочность сосуда.

Толстостенные оболочки

В толстостенных цилиндрических сосудах продольные и кольцевые швы выполняют многослойной дуговой или однопроходной электрошлаковой сваркой.

В кольцевых многослойных швах на образование напряжений σу оказывают влияние поперечная усадка очередного валика, вызывающая сжатие нижележащих слоев; изгиб, возникающий от поперечной усадки валика, расположенного с эксцентриситетом относительно центра тяжести шва; изгиб оболочки вследствие окружного сокращения валиков. Изгибы от поперечной усадки и вследствие окружного сокращения валиков вызывают растяжение в корне шва. Остаточные напряжения σу в корне шва после заварки всей разделки зависят от жесткости оболочки, и условий сварки. В гибких оболочках в корне шва могут возникать значительные поперечные деформации и напряжения. Продольные (окружные) напряжения σх в многослойных швах стальных обечаек близки к σт.

В толстостенных оболочках при электрошлаковой сварке радиальные перемещения незначительны, но возникают перемещения поперек шва, которые сильно изменяют сварочный зазор в процессе сварки. Ввиду пространственного расположения стыка в отдельных местах периметров возникает значительное закрывание зазора, которое, будучи зафиксировано швом, после полного остывания превращается в остаточные перемещения. Наибольшая поперечная усадка возникает в зоне около 0,4 периметра, считая от места начала сварки. Это вызывает излом продольной оси свариваемого цилиндра. При больших длинах цилиндров или осей необходимо проводить предварительную сборку, создавая клиновидный зазор.

  1.  Деформации и напряжения в соединениях с круговыми швами

В круговом сварном соединении на плоском листе распределение напряжений и деформаций в первом приближении может рассматриваться как осесимметричное.

В таком соединении следует различать три основных зоны: внутреннюю 1, среднюю 2 и внешнюю 3 (Рис. 9.15). Зона 2 соответствует зоне растягивающих напряжений в обычном прямолинейном шве и имеет, как правило, высокие напряжения σt, близкие к пределу текучести. Вследствие уравновешенности зоны 2, представляющей кольцо, радиальные напряжения σr3, действующие на внешнюю зону 3, всегда больше напряжений σr1, действующих на внутреннюю зону. В малоуглеродистых и аустенитных сталях зона 2 находится в состоянии пластической деформации, что соответствует условию пластичности,

( 9.6)

  1.  
    1.  Рис. 9.15 Характерные зоны кругового шва

В сочетании с дифференциальным уравнением равновесия уравнение ( 9.6) позволяет определить распределение напряжений σr2 и σt2 в зоне 2 в зависимости от величины напряжения σr1 или σr3. На (Рис. 9.16) схематично показано несколько возможных распределений напряжений σr2 и σt2 в зоне 2. В свою очередь, величина напряжений σr1 зависит от соотношения жесткостей элементов в областях 1 и 3, радиуса r20 , поперечного сокращения шва и ширины зоны пластических деформаций 2bп.

  1.  Рис. 9.16 Возможные распределения напряжений в зоне 2

Установить точную количественную связь между всеми этими величинами трудно. Однако всегда напряжение σr3 — растягивающее, в то время как σr1 может быть и растягивающим и сжимающим. Это объясняется тем, что поперечная усадка соединения вызывает растягивающие напряжения σr и в области 1, и в области 3, а продольная (окружная) вызывает в области 3 напряжения растяжения σr, а в области 1 — сжатие. При больших размерах зоны 3 и малых размерах зоны 1 поперечная усадка преобладает, и в области 1 действуют растягивающие напряжения (Рис. 9.16.). Аналогичная картина наблюдается, если элемент 1 представляет собой жесткую бобышку или фланец небольшого диаметра (до 100—200 мм). В этом случае могут возникнуть большие радиальные пластические деформации, и даже разрушение металла.

Сжимающие напряжения σr1 в зоне 1 возникают при относительно малой жесткости области 3, например, при приварке узкого кольца; окружное сокращение почти полностью передается на область 1 и она испытывает сжатие.

Круговые швы на сферических поверхностях вызывают нарушение формы оболочки в зоне кругового шва с приближением ввариваемого элемента к центру сферы (Рис. 9.17, б, пунктирная линия). Деформации появляются вследствие поперечной усадки соединения Δпоп и окружного сокращения металла в зоне пластических деформаций 2bп. Характер деформаций близок к осесимметричному. В круговых швах остаточные напряжения в окружном направлении обычно велики и могут достигать значений σT. Напряжения поперек шва могут изменяться от нулевых значений, если круговой шов близок к кольцевому, до значений σT в случае расположения кругового шва в зените сферы. Большие значения поперечных напряжений иногда являются причиной разрушений в круговых сварных соединениях.

  1.  Рис. 9.17 Деформации круговых швов

Деформации от круговых швов на цилиндрических оболочках имеют сложный характер (Рис. 9.17, а). Поперечная усадка в зонах В и продольная в зонах А создают сокращение периметра оболочки, в результате чего деталь 1 перемещается к оси цилиндра. Прямолинейная образующая искривляется.

При точечном разогреве на сферической или цилиндрической оболочке после остывания происходит перемещение нагревавшегося пятна к центру оболочки.

  1.  Деформации в конструкциях балочного типа

Характерной особенностью сварной конструкции балочного типа является их относительно большая длина (может исчисляться метрами, десятками метров, а для пролетных сооружений зданий, мостов - сотнями метров) по сравнению с высотой и шириной, поясные швы вдоль всей длины, наличие поперечных швов. (Рис. 9.18). Поперечные швы выполняются вследствие того, что прокат, как правило, имеет мерную длину, и обеспечение требуемой длины балки ведет за собой необходимость стыковки элементов.

Рис. 9.18 Пример сварной конструкции балочного типа

При сварке конструкций балочного типа возникают два вида деформаций: продольное укорочение и прогиб (Рис. 9.19).

Рис. 9.19 Расчетная схема тавровой балки

Для их нахождения используют понятие усадочной силы. Усадочная сила вызывает укорочение , которое находим из закона Гука

(9.1)

где Pусад - усадочная сила;

F - поперечное сечение балки;

- деформация балки, мм;

- напряжение, возникающее в балке.

Откуда

(9.2)

Поскольку длина балки может достигать больших размеров, то большой величины могут достигать и продольные укорочения, вызванные усадочной силой.

Эксцентричность приложения усадочной силы относительно центра тяжести сечения (Рис. 9.19) приведет к возникновению изгибающего момента, равного

,

(9.3)

где e - эксцентриситет приложения усадочной силы относительно центра тяжести сечения.

В результате действия изгибающего момента появляется прогиб (Рис. 9.20), определяемый по формуле

(9.4)

где I - момент инерции сечения относительно оси.

Рис. 9.20 Прогиб конструкции балочного типа

 

Рис. 9.21 Конструкция балочного типа с поперечными швами, расположенными перпендикулярно оси балки

Отрезка полос от листа (термическая) так же сопровождается изгибом. После остывания прогиб можно определить по тем – же правилам, что и для балок.

Если в балках имеются несимметрично расположен-ные продольные и попереч-ные швы, то из-за большой длины возникают значитель-ные прогибы.

Поперечными швами соединяются отдельные элементы поясов (шов №1 Рис. 9.21) и стенок (шов №2 Рис. 9.21). Если поперечный шов соединяет два листа на стенке, то общая длина балки уменьшится на величину поперечной усадки. Поперечная усадка шва, соединяющего два пояса, также сокращает длину, но только одного из поясов. При этом, если полки уже приварены к стенкам поясными швами, а поперечные швы расположены несимметрично, например только на верхней полке (Рис. 9.21), то поперечная усадка поперечных швов вызовет изгиб всей балки. Оценить угол загиба можно расчетным путем.

Так, если шов укладывается на верхнюю полку, то в балке действует усилие, приложенное к центру тяжести верхнего листа.

(9.5)

где Fп - площадь поперечного сечения полки;

- поперечная усадка.

Верхняя полка получает продольное укорочение, зависящее от величины поперечной усадки:

(9.6)

Усилия в верхней полке , с которым сваренные пластины притягиваются друг к другу, будет уравновешиваться напряжениями в нижней полке. В результате соединение получит изгиб

Угол загиба определяется из соотношений

;

,

(9.7)

где - угол, на который изгибается ось балки.

Поскольку  - статический момент полки относительно общего центра тяжести Sn , то

(9.8)

Таким образам, поперечный шов на полке вызывает местное ускорение и излом ее оси на угол .

При сварке таврового шва, так же как при сварке стыковых соединений возникают деформации в направлении поперечном,

Рис. 9.22 Деформация “грибовид-ность” балки таврового типа

Рис.9.23 Загиб полки относи-тельно стенки при сварке без жесткой фиксации полки

направлению сварного шва: поперечная усадка и, если прогрев был неравномерным по толщине из за разности усадочных сил, к изгибу (Рис. 9.22). При этом, если тавровое соединение надежно зафиксировано, то деформации появляются после съема с фиксирующего приспособления.

Если жесткой фиксации в приспособлении не осуществляется, то полка относительно стенки может свободно перемещаться и получить смещение (Рис.9.23). Причем это смещение вдоль длины шва будет разным. Это объясняется тем, что жесткость на загиб полки относительно стенки при незакрепленной полке определяется длиной шва. Вначале выполнения шва жесткость мала, и даже небольшие усилия могут приводить к существенным деформациям. При окончании сварки шва, он уже оказывает сопротивление деформации, и, вследствие большей жесткости, деформации будут значительно меньше.

В балках под действием усадочной силы из-за недостаточной жесткости конструкции может возникать потеря устойчивости в виде различного рода закручивания вдоль продольной оси (Рис. 9.24). При сварке симметричных швов 1 и 3; 4 и 2 (Рис. 9.24 б) в одном направлении, деформации изгиба от действия усадочной силы будут друг из друга вычитаться, а при сварке в противоположных направлениях - складываться. Поэтому при сварка симметричных швов в противоположных направлениях может вызвать большое закручивание балки.

а)

б)

Рис. 9.24 Крутильная форма потери устойчивости: а) в крестообразной балке; б) в двутавровой балке

Закручивание может возникать вследствие неодновременной поперечной усадки: 1 закручивает верхний пояс, 2 – нижний, т.к. 3 и 4 отсутствуют (есть лишь прихватки) и не могут оказать сопротивление. Швы 3 и 4 при сварке не могут вызвать такого – же закручивания с противоположенным знаком из – за сопротивления швов 1 и 2.

Итак, в балочных конструкциях деформации могут быть общими или локальными (например, появление грибовидности (Рис. 9.22)), и величины деформаций и прогибов из-за достаточно большой протяженности этих конструкций могут достигать существенных значений. Для устранения – сварка в кондукторе или жестком приспособлении, симметричное наложение швов.

  1.  Примеры вредного влияния сварочных напряжений, деформаций и перемещений

Остаточные напряжения и деформации могут влиять на получение и сохранение точных размеров и форм сварных конструкций, а также на их прочность и работоспособность.

Влияние собственных остаточных напряжений.

1.Изменение размеров и формы свойств соединений в процессе механической обработки. Либо непосредственно в процессе обработки, либо в момент съема со станка, в незначительной степени в процессе вылеживания. В процессе, обработки удаляется металл, в котором были собственные напряжения, при этом происходит нарушение равновесия сил. Снятие усилений - самый распространенный вид механической обработки (Рис. 9.25). Если закрепление детали не препятствует деформации, то изменение размеров возникает сразу. Искажение формы образовавшихся поверхностей может происходить так же вследствие различных сил резания закаленных и не закаленных зон не отпущенного соединения.

Рис. 9.25 Распределение напряжений

2.Изменение размеров в процессе эксплуатации может происходить так же вследствие релаксации напряжений и распада нестабильных структур, которые могут возникнуть в процессе сварки. Подобные изменения размеров весьма малы, и рассматривать их важно лишь для прецизионных свойств соединений в точном машиностроении и приборостроении.

3. Растягивающие остаточные напряжения снижают усталостную прочность сварных соединений. Чем выше рабочие напряжения (σраб) и эффективный коэффициент концентрации напряжения (KT), тем меньше влияние собственных напряжений. При высоких рабочих напряжениях и больших значениях эффективного коэффициента концентрации напряжений на первых же циклах возникает пластическая деформация от сумм остаточных и рабочих напряжений (σост+σраб). Кроме того, значительная концентрация напряжений по своему влиянию превалирует над остаточными напряжениями. При небольшой концентрации напряжений и рабочих напряжений собственные напряжения сохраняют свой высокий уровень и увеличивают средние напряжения (σm), тем самым, понижая прочность. Циклическая прочность сильно зависит от средних напряжений (σm), (Рис. 9.26).

 

Рис. 9.26 Схема средних напряжений

При σm>0 - тормозится рост трещин, циклическая прочность значительно выше.

При σm<0 - наблюдается рост усталостных трещин, т.о. циклическая прочность меньше.

Если материал достаточно пластичен, то в условиях рабочих нагрузок внутренние напряжения уменьшаются. Чем выше нагрузка, тем меньше собственные напряжения.

4. Остаточные напряжения могут понижать и статическую прочность. Если металл при температуре эксплуатации не чувствителен к концентрации напряжений и не испытывает значительные статические деформации при сварке, то остаточные напряжения не влияют на статическую прочность. В противном случае даже сами собственные напряжения могут вызвать появление холодных трещин.

Сумма рабочих и остаточных напряжений достигает предела выносливости и происходит разрушение.

5. Сжимающие напряжения могут привести к образованию выпуклостей и т.д., т.е. к потере устойчивости (Рис. 9.27).

Рис. 9.27 Распределение сжимающих напряжений

6. Растягивающие напряжения, действующие в сварном шве, снижают коррозионную стойкость.

7. Остаточные напряжения являются носителями энергии упругой деформации. При одноосной нагрузке энергия в единице объема: . Начавшееся по каким – либо причинам разрушение в дальнейшем поддерживается энергией остаточных напряжений. Энергия остаточных напряжений усиливает динамику разрушения, увеличивает скорость движения трещин и способствует переходу от вязкого разрушения к хрупкому.

Влияние деформаций после сварки:

1. Перемещения деталей создают деформации в зоне кристаллизации металла и могут приводить к образованию горячих трещин.

2. Во время сварки в ряде случаев возникают перемещения в зоне деформирования шва, что приводит к появлению дефектов, нарушающих режимы сварки.

3. Перемещения элементов при сварке (Рис. 9.28) затрудняют последующий процесс сборки сварных деталей между собой, а иногда делают ее невозможной без применения правки.

Рис. 9.28 Перемещения при сварке

а) Линейное смещение кромок шва, при котором поверхности двух свариваемых частей параллельны, но размещены не на требуемом уровне.

б) Угловое смещение кромок, при котором плоские поверхности двух свариваемых частей непараллельны (или не направлены под требуемым углом). Нарушение технологического процесса сборки заготовок.

4. Из-за возникновения при сварке перемещений приходится назначать завышенные припуски на механическую обработку.

5. Некоторые виды перемещений изменяют геометрические характеристики сечений (Рис. 9.29).

Рис. 9.29 Искажение поверхности

а) теоретический профиль

;

б) изменение вследствие сварки

;

6. Начальные перемещения могут вызывать снижение устойчивости, особенно местной.

7. В летательных аппаратах или в судах энергетической установок искажение поверхности, которые обтекаются жидкостью или газами увеличивают сопротивление потоку. В деталях машин искажение размеров вызывает увеличение зазоров, либо наоборот, увеличение сил трения или заклинивания.

8. Значительные отклонения от правильных геометрических форм нарушают требования технической эстетики и ухудшают товарный вид сварных изделий.

  1.  Методы уменьшения сварочных напряжений, деформаций и перемещений

Рациональные конструирование.

За счет выбора размеров и расположения сварных швов можно добиться существенного уменьшения коробления конструкции. Для этого следует назначать минимальные, найденные из расчета на прочность катеты угловых швов; обеспечивать максимальную жесткость конструкции к моменту сварки швов; располагать швы симметрично для взаимной компенсации перемещений от отдельных швов.

Некоторые из перечисленных приемов могут приводить к росту напряжений (сварка в жестком контуре) или снижать качество металла шва (сварка с минимальным катетом шва).

В ряде случаев можно компенсировать перемещения при сварке путем корректировки размеров заготовок с учетом последующей усадки или создания предварительных искажений формы деталей противоположного знака. В случае неизбежности перемещений при сварке в конструкции должен быть обеспечен доступ для последующей правки.

Рациональная технология сборки и сварки.

Существенное уменьшение остаточных перемещений может быть достигнуто за счет: сборки в жестком приспособлении или на прихватках перед началом сварки; рациональной последовательности наложения швов, а также выбора способа и режима сварки с минимальной погонной энергией. При многопроходной сварке погонная энергия существенно ниже, чем при однопроходной сварке такого же шва, а при контактной, лазерной и электроннолучевой - ниже, чем при дуговой.

Предварительный и сопутствующий подогревы при сварке позволяют уменьшить пластические деформации и напряжения вследствие:

уменьшения разности температур между отдельными точками тела;

меньшего вложения теплоты при сварке;

снижения предела текучести металла;

изменения скорости охлаждения и характера структурных превращений.

Пластическое деформирование после сварки. Этот прием применяется в основном для правки конструкции. Чаще всего деформация осуществляется за счет сжатия шва и околошовной зоны в направлении толщины сваренных пластин. При этом уменьшается усадка шва, образовавшаяся после сварки. Одновременно снижаются продольные остаточные напряжения в шве. Применяются различные способы деформирования: прокатка роликами, проковка, обработка взрывом. Обработка может быть осуществлена как после полного остывания, так и сразу после сварки (например, роликом, движущимся вслед за дугой, или сварочным электродом при точечной контактной сварке).

Недостатком всех указанных методов является снижение пластичности деформируемой зоны.

Рис. 9.30 Схема прокатки роликами:

а - прокатка всей зоны пластических деформаций поочередно;

б - перекат средней части зоны пластических деформаций; в - шов не прокатан;

1 — 5 - последовательные операции прокатки роликами

Сила, которую необходимо приложить к роликам для снижения до нуля остаточных растягивающих напряжений, близких к пределу текучести, определяется по формуле

( 9.7)

где b,d- ширина и диаметр рабочей поверхности ролика; σТ, Е, s - предел текучести, модуль упругости и толщина прокатываемого материала.

В случае невозможности прокатать шов и околошовную зону за один проход ролика, прокатку осуществляют более узким роликом, начиная со шва, с переходом на околошовную зону (Рис. 9.30). Если шов или часть околошовной зоны недоступны для прокатки, то можно добиться устранения усадки шва за счет увеличения силы прокатки доступной части. При этом в прокатанной части создаются напряжения сжатия, а в непрокатанной сохраняются растягивающие напряжения.

Применяются также растяжение вдоль оси шва, изгиб (для балок) и другие схемы деформирования. Уменьшить напряжения можно вибрационной обработкой сварного изделия.

Создание неравномерных нагревов или охлаждений. Этот метод широко используют для перераспределения остаточных напряжений. Для уменьшения напряжений растяжения необходимо создавать нагрев вблизи зоны с напряжениями растяжения (Рис. 9.31, а) или охлаждение в самой этой зоне (Рис. 9.31, б). В любом случае в зоне с напряжениями растяжения возникают дополнительные напряжения растяжения, которые, суммируясь с остаточными напряжениями растяжения, вызывают пластические деформации металла и после выравнивания температур напряжения снижаются. Для уменьшения напряжений сжатия необходимо греть зоны с такими напряжениями или охлаждать окружающие зоны. Эффект от местного нагрева определяется его концентрацией и перепадом температур, поэтому следует создавать небольшие пятна нагрева и охлаждения. При потере устойчивости листовых элементов местный нагрев сжатых участков позволяет вызвать их пластическое укорочение после остывания и исправление деформаций.

Рис. 9.31 Схема расположения зон нагрева (а) и охлаждения (б) для уменьшения растягивающих напряжений (в)

Рис. 9.32 Снижение напряжений от различного начального уровня в процессе отпуска

Термическая обработка (отпуск или отжиг). Достоинством отпуска является снижение напряжений во всех точках тела, независимо от сложности его формы, без снижения пластичности металла.

Отпуск сварных конструкций применяют для изменения структуры и свойств ,металла, а также для снижения остаточных напряжений. Применение отпуска для снижения остаточных напряжений целесообразно, если предъявляются повышенные требования к прочности сварной конструкции и точности ее размеров при последующей эксплуатации. Кроме того, иногда целесообразно восстановить пластические свойства в зонах, где концентрировались пластические деформации при сварке, и повысить сопротивляемость хрупким разрушениям. В остальных случаях применение отпуска не рекомендуется из-за повышения стоимости производства конструкций.

Термический цикл отпуска состоит из нагрева, выравнивания температур, выдержки при заданной температуре и охлаждения. Большая часть снижения напряжений происходит уже на стадии нагрева (Рис. 9.32) и определяется температурой отпуска. Чем выше температура отпуска, тем полнее устраняются напряжения, однако при этом снижается прочность металла.

Важно ограничить скорость охлаждения после отпуска (остывание в печи), так как при быстром охлаждении возможно возникновение новых остаточных напряжений.

Если отпуск или отжиг детали осуществляется в зажимном приспособлении, то одновременно со снятием напряжений выполняется правка.

Различают: общий отпуск, когда равномерно нагревают изделие целиком; местный — нагревают лишь часть конструкции в зоне сварного соединения; поэтапный — источник нагрева движется вдоль конструкции, например, трубы или оболочки, и последовательно нагревает ее участки; поэлементный — термической обработке подвергают узлы сварной конструкции, а затем сваривают их между собой. Основное достоинство отпуска как метода снижения остаточных напряжений в том, что он не вызывает пластических деформаций, которые бы уменьшали пластичность металла.

Температуры отпуска (в градусах Цельсия), обеспечивающие существенное снижение остаточных напряжений, для углеродистых сталей 580...680, для аустенитных сталей 850... 1050, для сплавов магния и алюминия 250...300, для титановых сплавов 550…600.

  1.  Способы снижения сварочных деформаций при РДС

Однопроходная сварка

Сварные швы в зависимости от длины условно делят на 3 группы:

Короткие (до 250 мм)

Средней длины(250<l<1000мм)

Длинные ( свыше 1000мм)

Короткие швы обычно выполняют ”на проход” т.е. при движения электрода от начала к концу шва.

При выполнении длинных швов и швов средней длины возможно коробление, и для его предотвращения применяют специальные меры:

При сварке швов средней длины используется сварка ”сварка напроход” (Рис. 9.36) от середины к концам или обратноступенчатый способ (Рис. 9.35) - при этом каждый из коротких швов выполнен целым количеством элементов (2-мя, 3-мя), при этом переход от участка к участку совмещается со сменой электрода.

Рис. 9.33 Сварка обратноступенчатым методом

Каждый участок заваривается в направлении, обратной общему, а последний заваривается на выход (Рис. 9.33).

Длинные швы завариваются от середины к концам обратно ступенчатым способом. При этом возможно организовать работу двух сварщиков одновременно.

Многопроходные швы

При сварке конструкций большой толщины (как правило, свыше 25 мм) собственные сварочные напряжения переходят в трехосные, увеличивается вероятность образования трещин.

Для снижения уровня напряжения и вероятности образования трещин применяют специальные приемы заполнения многопроходных швов блоками или каскадами.

При каскадном методе (Рис. 9.34) выполняется обратноступенчатая сварка, многослойный шов выполненный отдельными участками с полным заполнением каждого из них.

Рис. 9.34 Сварка блоками

При сварке блоками сначала в разделку кромок наплавляют первый слой длиной 200-300 мм затем второй, перекрывающий первый и имеющий примерно вдвое большую длину.

Рис. 9.35 Сварка каскадом

Рис. 9.36 Сварка каскадом двумя сварщиками

Так наплавляют слои до тех пор, пока на небольшом участке над первым слоем разделка не будет заполнена. Затем от этого участка сварку ведут короткими швами тем же способом. Таким образом, зона сварки находится все время в горячем состояние.

  1.  Хрупкие разрушения сварных конструкций

Хрупкость – это свойство металла, разрушенное без заметного пластичного деформирования. Хрупкие разрушения характеризуются следующими признаками:

  •  такое разрушение происходит при напряжениях меньших предела текучести, а в некоторых случаях и ниже, чем допускаемые;
  •  хрупкие разрушения реализуются в форме самопроизвольного развития трещин, т.е. хрупкая трещина растет под влиянием запаса упругой энергии.

Хрупкие разрушения развиваются по границам зерен, и имеют кристаллическую поверхностью излома. Вязкие разрушения идут по телу зерна, и имеют волокнистый излом. Промежуточное положение занимают полухрупкие разрушения, у которых часть поверхности имеет кристаллический, а часть поверхности — волокнистый излом.

Аварии, связанные с хрупким разрушением, составляют 10–15 % от аварий различных инженерных конструкций. Главная опасность хрупких разрушений связана с неожиданностью их разрушений, которые происходят при низком уровне напряжения, когда, казалось бы, все требования выполнены.

Наиболее распространенным и простым методом оценки изменения свойств при понижении температуры является испытание на ударную вязкость. Чем острее надрез испытуемого образца, крупнее его кристаллы, скорость ударяющего тела, тем меньше ударная вязкость.

В настоящее время наука не располагает расчетными методами, позволяющими оценить способность конструкции противостоять хрупкому разрушению. Трудность решения э ой задачи объясняется двойной природой металла: вязкой и хрупкой, то есть металл может быть пластичным и хрупким.

При наличии трехосного сжатия даже чугун разрушается после пластической деформации.

Основные факторы, определяющие переход от вязкого разрушения к хрупкому:

  1.  Температура. При отрицательной температуре пластичность почти всех конструкционных материалов значительно ниже чем при нормальной.

Характер изменения свойств металлов при понижении температуры зависит от многих факторов: вида кристаллической решетки, химического состава, величины зерна, термической обработки — и проявляется по-разному в зависимости от условий нагружен и я и напряженного состояния.

У металлов и сплавов с гранецентрированной решеткой (γ-Fe, Cu, Al) с понижением температуры предел текучести по сравнению с пределом прочности повышается незначительно пластичность и ударная вязкость с понижением температуры почти не меняется. Такие материалы относятся к хладостойким.

У металлов и сплавов, имеющих объемно-центрированную решетку (α-Fe, Cr) предел текучести повышается значительно сильнее, чем предел прочности. Такие материалы относятся к хладноломким.

Железа, углеродистые и низколегированные стали высокой прочности, имеют резко выраженную область температур перехода от вязкого к хрупкому разрушению.

Высокая работоспособность многих деталей машин, сварных соединений и элементов сварных конструкций при пониженных температурах решающим образом зависит от их способности сопротивляться хрупким разрушениям.

Рис. 10.1 Характер изменения доли площади с волокнистым изломом В (%) работы разрушения аН, предела текучести σТ и среднего разрушающего напряжения σСР. Р в зависимости от температуры испытания для низкопрочных сталей

Принято определять при понижении температуры так называемую первую критическую температуру Ткр, резко уменьшающую ударную вязкость, при которой площадь волокнистого (вязкого) излома составляет 50% общей разрушенной площади, либо как температуру при которой ударная вязкость снижается ниже 30 Дж/см2.

На Рис. 10.1 показаны изменения процентного содержания волокнистого излома В, работы разрушения KCU, предела текучести σт среднего разрушающего напряжения σСР. Р в зависимости от температуры испытаний.

На хладостойкость сталей оказывают влияние химический состав металла, структура, которая меняется под действием термообработки или термического цикла сварки.

  1.  Влияние скорости нагружения на хрупкие разрушения.

Увеличение скорости удара с 5 до 15 м/с при испытании на удельную вязкость приводит к переходу стали Ст.3 от вязкого к хрупкому разрушению.

Переход к хрупкому разрушению связан с увеличением степени снижения деформаций по мере увеличения скорости нагружения.

  1.  Масштабный фактор. С уменьшением толщины проката пластичная деформация протекает более свободно, снижает степень трехосности напряженного состояния, то есть переходит к двуосному напряженному состоянию. Вследствие снижения толщины проката сопротивление хрупкому разрушению увеличивается.
  2.  Влияние концентраций напряжения. Практически всегда разрушение зарождается в области конструктивных и технологических концентраторов напряжения. С увеличением концентрации напряжения все характеристики, описывающие характер разрушения, снижаются.

Переход от вязкого к хрупкому разрушению с ростом концентрации напряжения смещается в сторону положительных температур.

Отсутствие малых радиусов перехода, непроваров, скоплений швов, применение неразрушающего контроля позволяет заметно повысить сопротивляемость хрупким разрушениям как при нормальных, так и при низких температурах.

влияние сварки:

а) концентрация напряжения конструкции и технологические дефекты;

б) остаточное напряжение;

в) неблагоприятные изменения структуры металла, вызванные термическим воздействием сварочной дуги.

Воздействие термического цикла на металл многообразно, свойства шва определяются его химическим состоянием, наличием в электродном и присадочном материале легирующих элементов и т.д. В процессе охлаждения при низких скор. св. возможен рост зерна, а при быстром охлаждении – уменьшение зерна. В обоих случаях шов может стать источником хрупкого разрушения.

Во время остывания в сварном шве развивается пластическая деформация удлинения 1,5-2 %. Если шов накладывается вблизи концентратора напряжений, то пластическая деформация приближается к предельным. И при незначительном нагревании может начаться разрушение, то есть сварка может сильно уменьшить способность сопротивления хрупкому разрушению.

Сочетание пластической деформации и нагрева при 200…300 °С вызывает охрупчивание, называемое динамическим старением. Именно в этих зонах нередко образуются хрупкие разрушения при последующем действии низкой температуры в эксплуатационных условиях.

При старении металла имеет место снижение сопротивления удару и пластических свойств, а именно пластического удлинения.

Для предупреждения хрупкого разрушения необходимо:

рациональное конструктивное оформление сварных соединений уменьшающее концентрацию как рабочих так и остаточных сварочных напряжений, то есть выполнение сварных соединений с плавными переходами от шва к о.м.;

назначение последовательности сборочных и сварочных операций исключающих концентрацию напряжений в зоне пластических деформаций;

применение присадочных материалов и режимов обеспечивающих высокую пластичность при низких температурах;

выбор режимов сварки обеспечивающих оптимальную с точки зрения сопротивляемости хрупким разрушениям структуру, в первую очередь правильное назначение погонной энергии при сварке; при неправильно выбранных параметрах режима в отдельных зонах сварных соединений могут старение, происходить рост зерна, закалка, отпуск.

выбор основного металла исходя из двух условий:

а) не имеющий склонность к деформационному старению;

б) с высокой ударной вязкостью при низкой температуре.

Назначение термообработки сварных соединений

Влияние высоко отпуска:

а) сниженный уровень остаточной деформации;

б) устранение области деформационного старения и повышение пластичности.

  1.  Прочность при высоких температурах

При обсуждении прочности свойств металла при высоких температурах в качестве критерия чаще всего использовались отношения заданной абсолютной температуры к температуре плавления. Эту безразмерную величину называют гомологической температурой.

Зависимость деформации и механизма разрушения от времени проявления у большинства металлов при гомологической температуре ≈ 0,3 (Для FeT = 3000C). Свинец при комнатной температуре находится в высокотемпературных условиях.

При высоких температурах в металлах проявляется свойство ползучести – это явление увеличивает деформации материала с течением времени при постоянной нагрузке. Для определения прочности при высокой температуре проводят испытания на прочность и ползучесть. Зависимость деформации от времени называют кривой ползучести (Рис. 11.1), которую получают на установках (Рис. 11.2).

Рис. 11.1 Кривые ползучести.

В I скорость деформация после приложения нагрузки постепенно уменьшается.

Во II постоянная скорость деформаций.

В III ускоренная ползучесть, скорость деформации увеличивается со временем вплоть до разрушения.

Кроме испытаний на ползучесть для определенной прочности при высокой температуре применяются испытания на длительную прочность. По методике испытаний они отличаются тем, что в ходе испытаний регистрируется только время до разрушения.

Рис. 11.2 Схема испытаний на ползучесть.

Наиболее общим способом предоставления результатов испытаний на длительную прочность является построение кривых длительной прочности:

Рис. 11.3 Кривые длительной прочности.

Разрушение при высоких температурах могут носить вязкий внутризёренный характер, такой характер разрушений соответствует сравнительно невысоким температурам и большой длительности испытаний, при высоких температурах и больших нагрузках разрушение носит хрупкий межзёренный характер. Переход от вязкого разрушения к хрупкому сопровождается изломом кривой длительной прочности.

Концентраторы напряжения снижают пластичность как при высоких, так и при нормальных температурах.

Влияние структуры материала и его состава на жаропрочность

Жаропрочность повышается двумя способами:

Легирование элементами повышающими температуру рекристаллизации и температуру начала диффузионных процессов. Наличие легирующих элементов создает дополнительные фазы (карбиды или интерметаллиды), создает препятствия высокотемпературной ползучести.

Термообработка как правило включает в себя закалку позволяет получить высокодисперсные фазы пересыщенными твердыми растворами и последующий отпуск или старение, в ходе которых выделяются мелкодисперсные упрочняющие фазы. В процессе эксплуатации происходит коагуляция мелкодисперсных фаз и жаропрочность теряется.

  1.  Жаропрочные стали и сплавы

Для изготовления объектов теплоэнергетики эксплуатируемых при температурах 450-600градусов Цельсия используются теплоустойчивые низколегированные стали.

К теплоустойчивым относят низколегированные хромомолибденовые стали (12ХМ, 12МХ, 15ХМ, 20ХМЛ) и хромомолибденованадиевые стали (12Х1М1Ф, 15Х1М1Ф, 20ХМФЛ) выпускаемым по ГОСТ 20072, ГОСТ 5520, ГОСТ 4543, техническим условиям и по отраслевым стандартам. Теплоустойчивые стали используются в энергетике химической и нефтяной отраслях для изготовления агрегатов работающих при температуре 450-550 С (для хромомолибденовых) и 550-600 – для хромомолибденванадиевых сталей.

Теплоустойчивые стали обладают повышенной механической прочностью при высоких температурах и при длительных постоянных нагрузках, а также достаточной жаростойкостью.

Применение теплоустойчивых сталей обеспечивает возможность нормальной эксплуатации конструкций в условиях высоких температур при значительных напряжениях и в особых средах, способствующих химическому и механическому разрушению металла в течении длительных сроков эксплуатации - до 100000 ч (около 10 лет).

Табл. 11.1 Прочностные характеристики некоторых сталей при высоких температурах.

марка

12ХМФ

80

60

15Х1МФ

85

65

15Х11МФ

97

18Х12ВМБФР

180

150

При низком уровне напряжений температура эксплуатации может быть повышена.

Для сварных конструкций эксплуатирующихся при более высоких температурах используются высоколегированные стали мартенситного, мартенситно-ферритного, ферритного и аустенитного классов, а также сплавы на основе железа и никеля

ХН77ТЮР =200 МПа

Свойства сварных соединений отличаются от свойств основного металла наличием концентрации напряжений ползучести, приводящей к локальным исчерпываниям пластичности, а при длительных выдержках — к хрупким разрушениям даже в зоне мягких прослоек, что нередко имеет место.

В сварных соединениях появляются мягкие прослойки, в которых при повышенных температурах появляются хрупкие разрушения в случае длительных выдержек.

Иногда разрушения в этих прослойках носят смешанный характер — транс- и межкристаллический. Узкие мягкие прослойки часто не обнаруживают уменьшения прочности. Широкие прослойки пластичности не понижают, а нередко сохраняют прочность основного металла.

В сварных соединениях в условиях высоких температур возникают концентрации не только напряжений, но и деформаций, неравномерность которой при ползучести усиливается.

В сварных соединениях часто образуются зоны с неоднородными свойствами металла, наблюдаются дисперсионное упрочнение зерен и одновременно ослабление их границ.

Длительная прочность термически упрочненных сталей может быть невысокой вследствие образования разупрочнения зон термического влияния.

При строгом контроле неразрушающими методами качества сварных соединений и применении в необходимых случаях термической обработки допускаемые напряжения в сварном соединении оцениваются по отношению к прочности основного металла коэффициентом φ, устанавливаемым в зависимости от марки стали и технологического процесса.

Для углеродистых и низколегированных сталей φ = =0,85…1,0 при дуговой автоматической сварке под флюсом, электрошлаковой, контактной и в среде СО2; для всех других видов сварки φ =0,75…1.

При расчете сварных соединений на прочность, работающих при повышенных температурах, определяют допускаемые напряжения с учетом следующих трех отношений:

 

где σВ — предел прочности при нормальных температурах: σТ — предел текучести при нормальных температурах; σД.П. — предел длительной прочности; n1=2,5…4,0; n2= 1,5…2,0; n3=1,5…3,0 — коэффициенты запаса для котельных и турбинных установок, варьирующие от ряда параметров.

Из указанных трех отношений выбирают одно, имеющее наименьшую величину.

  1.  Коррозионная стойкость сварных соединений

Рис. 12.1 Характер разрушения при общей коррозии

Коррозионное разрушение является наиболее распространенной причиной выхода из строя металлоконструкций. Коррозия – это разрушение металла вследствие химического или электрохимического взаимодействия с окружающей средой.

Химическая коррозия – взаимодействие металла с неэлектропроводной средой.

Электрохимическая коррозия – взаимодействие металла с электропроводной средой.

По характеру разрушений коррозия подразделяется на:

общую или сплошную (см. Рис. 12.1): а) равномерную; б) сосредоточенную на шве; в) сосредоточенную на зоне термического влияния г) преимущественно на основном металле;

местную Рис. 12.2:

а) межкристаллитная в ЗТВ;

б) ножевая в зоне сплавления;

в) в сварном шве;

г) точечная (питтингоговую);

Рис. 12.2 Характер разрушения при местной коррозии

и) коррозийное растрескивание под напряжением, повторно статическое и циклическое ().

Для сварных соединений характерны все основные типы коррозийного разрушения обычных металлоконструкций, однако они имеют свою специфику, объясняемую причинами:

неоднородность по химическому составу и структуре,

наличие остаточных напряжений и концентрации напряжений.

Рис. 12.3 Характер разрушения при коррозионном растрескивании.

Влияние механических напряжений.

Механические напряжения разрушают окисные пленки и способствуют коррозии.

Остаточное напряжение повышает уровень внутренней энергии, и тем самым снижает термодинамичекую устойчивость.

Наиболее опасным видом коррозии является растрескивание металла – это коррозия при одновременной воздушной коррозии среды и растягивания напряжения (от внешнего нагревания или собственного).

Направление роста трещин – перпендикулярно растягивающей нагрузке.

Коррозийное растр. металла является самым опасным из-за того, что оно скрытое и его трудно обнаружить типичными средствами – растворы различных нитратов: Ca(NO3)2; NH4NO5; Ba(NO3)2; NH4Cl.

Для повышения сопротивления коррозионному разрушению сварных конструкций могут быть использованы традиционные способы:

1) использование основных материалов стойких к коррозии в данной среде,

2) применение защитных покрытий (металлических и неметаллических),

3) изменение внешних условий (напряженного состояния).

Специфические для сварных конструкций способы повышения коррозионной стойкости приведены в Табл. 5.1.

Табл. 12.1 Классификация основных сварочно-технических методов повышения стойкости сварных соединений против коррозионного разрушения

Период

Улучшение коррозионной стойкости металла сварных соединений путем регулирования химического состава и структуры

Улучшение напряженного состояния в сварных соединениях

До сварки

Выбор оптимального состава и улучшение свойств основного металла перед сваркой

Регулирование химического состава и структуры шва:

подбор рациональных присадочных материалов, проволок, покрытий, флюсов, защитных газов и др.;

рациональная форма шва

Рациональное конструирование сварных соединений и узлов:

правильный расчет: исключение конструктивных концентраторов напряжений; избежание наложения швов в высоконапряженных зонах конструкции; уменьшение величины жесткости схемы и размеров зон остаточных напряжений

Уменьшение общей и местной напряженности:

сварка без технологических концентраторов напряжений; рациональная последовательность наложения швов

При сварке

Регулирование термодеформационного цикла сварки и условий кристаллизации:

применение рационального метода, способа и режима сварки по погонной энергии и степени концентрации источника тепла; применение тепловых способов регулирования: дополнительного, предварительного, сопутствующего, последующего подогрева или охлаждения при сварке;

После сварки

Улучшение свойств и снятие остаточных сварочных напряжении и деформаций термической, механической и термомеханической, ультразвуковой и другими видами обработки. Создание сжимающих напряжений на поверхности.

Нержавеющие стали

Нержавеющая сталь (нержавейка) - сложнолегированная сталь, стойкая против ржавления в атмосферных условиях и коррозии в агрессивных средах. Основной легирующий элемент нержавеющей стали - Cr (12-20%). Кроме того, нержавеющие стали содержат элементы, сопутствующие железу в его сплавах (С, Si, Mn, S, Р), а также элементы, вводимые в сталь для придания ей необходимых физико-механических свойств и коррозионной стойкости (Ni, Mn, Ti, Nb, Co, Mo). Чем выше содержание Cr в стали, тем выше её сопротивление коррозии. При содержании Cr более 12% сплавы являются нержавеющими в обычных условиях и в слабоагрессивных средах, более 17% - коррозионностойкими и в более агрессивных окислительных и др. средах, в частности в азотной кислоте крепостью до 50%.

Коррозионная стойкость нержавеющей стали объясняется тем, что на поверхности контакта хромсодержащего сплава со средой образуется тончайшая защитная плёнка окислов или др. нерастворимых соединений. Большое значение при этом имеют однородность металла, соответствующее состояние поверхности, отсутствие у стали склонности к межкристаллитной коррозии. Чрезмерно высокие напряжения в деталях и аппаратуре вызывают коррозионное растрескивание в ряде агрессивных сред, а иногда приводят к разрушению. В сильных кислотах высокую коррозионную стойкость показывают сложнолегированные нержавеющие стали и сплавы с более высоким содержанием Ni с присадками Mo, Cu, Si в различных сочетаниях. При этом для каждых конкретных условий выбирается соответствующая марка нержавейки. Выделяется также нержавейка жаростойкая.

Коррозионностойкие высокохромистые предназначены для работы в средах разной агрессивности. Для слабо агрессивных сред используются стали 08Х13, 12Х13, 20Х13, 25Х13Н2.

Детали из этих сталей работают на открытом воздухе, в пресной воде, во влажном паре и растворах солей при комнатной температуре.

Для сред средней агрессивности применяют стали 07Х16Н6, 09Х16Н4Б, 08Х17Т, 08Х22Н6Т, 12Х21Н5Т, 15Х25Т.

Для сред повышенной агрессивности используют стали 08Х18Н10Т, 08Х18Н12Т, 03Х18Н12, которые обладают высокой стойкостью против межкристаллитной коррозии и жаростойкостью. Структура коррозионностойких сталей в зависимости от химсостава может быть мартенситной, мартенситно-ферритной, ферритной, аустенитно-мартенситной аустенитно-ферритной, аустенитной.

Хладостойкие стали должны сохранять свои свойства при температурах минус 40 - минус 80°С. Наибольшее применение имеют стали: 20Х2Н4ВА, 12ХН3А, 15ХМ, 38Х2МЮА, 30ХГСН2А, 40ХН2МА и др.

  1.  Сварные листовые конструкции
    1.  Расчет на прочность листовых оболочковых конструкций по безмоментной теории Лапласа

Расчет оболочковых конструкций, имеющих достаточно большое отношение радиуса к толщине, ведут по безмоментной теории Лапласа. Распределение σ по толщине листа равномерное, соответственно в конструкции не возникает изгибающих моментов. Гипотеза дает хороший результат в случае, если диаметр обечайки значительно больше толщины.

Рассмотрев равновесие элемента оболочки (Рис. 13.1 а) запишем:

аб

Рис. 13.1 Схема к определению осевых и меридиональных напряжений.

В итоге получаем:

( 13.1)

Из условия равновесия верхней части оболочки (Рис. 13.1 а) получим:

( 13.2)

Система уравнений ( 13.2) и ( 13.3) позволяют найти тангенциальные и меридиональные напряжения в оболочке зная внутреннее давление и геометрическую форму оболочки.

Для наиболее простого случая (прямая труба) расчетные формулы приобретают вид:

 

( 13.3)

  1.  Гипотеза Хубера-Мизеса

Предельное состояние в условиях многоосного напряженного состояния определяется согласно гипотезе Хубера-Мизеса.

Согласно данной гипотезы, переход металла к пластичности соответственно связан с величиной накопленной в единице объема потенциальной энергии формоизменения.

Величина внутренней энергии формоизменения:

( 13.4)

– коэффициент Пуассона

Е – модуль упругости

При трехосном напряженном состоянии:

 

( 13.5)

При 2-осн.

  1.  Сварные детали машин


 

А также другие работы, которые могут Вас заинтересовать

47670. Учебно-методическое пособие. Математические методы исследования операций 1.56 MB
  В данном учебно-методическом пособии рассмотрены основные типы задач линейного программирования, даны рекомендации по построению их математических моделей и поиску оптимальных решений средствами табличного редактора Mathcad
47673. Методические указания. Финансовый менеджмент 90.5 KB
  Целью изучения дисциплины является подготовка студентов к применению полученных знаний для рационального управления финансами предприятия. Задачами дисциплины являются: ознакомление с состоянием отечественного и мирового опыта организации управления финансами;...
47676. Оформление учебных текстовых документов. Методические указания 366 KB
  Единая система конструкторской документации. Общие требования к текстовым документам введен Построение документа Пояснения к записи ПРИЛОЖЕНИЕ А Пример оформления содержания ПРИЛОЖЕНИЕ Б Пример оформления текстовой части документа ПРИЛОЖЕНИЕ В Пример оформления таблиц ПРИЛОЖЕНИЕ Г Пример оформления рисунка ПРИЛОЖЕНИЕ Д Пример оформления формул ПРИЛОЖЕНИЕ Е Примеры оформления использованных источников 1 ОБЩИЕ СВЕДЕНИЯ 1.