2780

Изучение компенсационного метода измерений

Лабораторная работа

Физика

Изучение компенсационного метода измерений. Цель работы. Ознакомиться с компенсационным методом измерений. Произвести измерения с помощью потенциометра ПП-63. Компенсационный метод применяется для точного измерения ЭДС, напряжения и потенциала.

Русский

2012-10-19

37.08 KB

30 чел.

Изучение компенсационного метода измерений.

Цель работы:

1) Ознакомиться с компенсационным методом измерений.

2) Произвести измерения с помощью потенциометра ПП-63.

Компенсационный метод применяется для точного измерения ЭДС, напряжения и потенциала.

Как известно, измерение напряжения и ЭДС часто производится с помощью вольтметра. Однако этот метод приводит к значительным ошибкам в измерениях из-за конечной величины сопротивления вольтметра. При подключении вольтметра к источнику UX (рис 1) по цепи будет протекать ток

,

где RV – сопротивление вольтметра; r -  внутреннее сопротивление источника UX 

Величина напряжения на вольтметре UV=I*RV , измеряемая прибором, в этом случае будет отличаться от значения UX на      (1)

Эта ошибка U также, как и относительная погрешность измерений

(2)

будут зависеть от сопротивления вольтметра, они будут уменьшаться с ростом величины RV и стремиться к нулю только при RV  . Если же RV = r, то  может достигать величины 50%. Таким образом, подключение вольтметра искажает режим работы цепи, где производится измерение и может приводить к значительным ошибкам в измерениях. Указанный недостаток устраняется при применении компенсационного метода измерений.

Компенсационный метод основан на сравнении (компенсации) неизвестного измеряемого напряжения UX (или ЭДС X) с известным компенсирующим напряжением UК. измеряемое и компенсирующее напряжения подключаются к индикатору равенства (обычно чувствительному гальванометру) (рис 2). Сила и напряжение тока в такой цепи будет определяться разностью UX и UК. при равенстве этих величин сила тока в цепи равна нулю, и «индикатор равенства» даёт нулевое показание. Если величина UК плавно регулируется, то, подключая таким образом различные UX и добиваясь нулевого показания  «индикатора равенства», по величине UК можно определить значение UХ измеряемого напряжения.

Таким образом ясно, что при компенсационном методе вследствие отсутствия тока в измерительной цепи в момент компенсации не вносится искажений в режим работы цепи, где производится измерение, и ошибки U и  (формулы (1)и (2)) исключаются. Строго говоря, измерение ЭДС возможно только компенсационным методом. Кроме того «индикатор равенства» должен фиксировать отсутствие тока, поэтому для этой цели могут применяться чувствительные гальванометры, причём градуировка шкалы в этом случае (Ir=0) не влияет на результат измерения. Всё указанное приводит к тому, что компенсационный метод измерения в настоящее время является наиболее точным и чувствительным методом.

Приборы для измерения напряжений и ЭДС компенсационным методом носят название потенциометров или компенсаторов.

Принцип действия потенциометров.

Простейшая схема потенциометра приведена на рис 3. Здесь в качестве источника компенсирующего напряжения используется падение напряжения UК на сопротивлении RK при протекании по нему тока IP от специального источника Р . В качестве индикатора равенства используется гальванометр. Измеряемой величиной является ЭДС источника Х.

                                     

Рассмотрим условия компенсации, т.е. условия, при которых сила тока в цепи гальванометра равна нулю.

В общем случае на отдельных участках схемы рис.3 текут токи I, IP, Ir, направления которых выберем так, как указано стрелками. Применим к рассматриваемой схеме правило Кирхгофа. Согласно 1 правилу, алгебраическая сумма токов в узле равна нулю. Тогда для узла А имеем:            I + Ir - IP = 0                (3)

По правилу сумма падений напряжений на всех элементах замкнутого контура равна сумме ЭДС, действующих в этом контуре. Для контуров PABCP и XABX можно соответственно записать (направление обхода контуров указано на рис.3 стрелками):

P=IPRK +I(RP +rp),                   (4)

где  rp – внутреннее сопротивление источника P.

        X= IPRK +Ir(rx+rr)                    (5)

где rx – внутреннее сопротивление источника Х ; rr – внутреннее сопротивление гальванометра.

В случае компенсации ток в цепи гальванометра Ir =0, и выражение (5) имеет вид:

        X= IPRK                          (6)

т.е. неизвестная ЭДС (или UX) компенсируется падением напряжения на сопротивлении RK (на участке АВ).

Выражения (3) и (4) в этом случае (Ir =0) будут иметь вид:

           I=IP                               (7)

     P=IPRK +I(RP +rp)              (8)

Из (8) с учётом (7) можно получить:

       (9)

где Rобщ = RK +RP +rp – общее сопротивление цепи источника P.

Подставив значение IP в выражение (6), окончательно имеем

                  (10)

Таким образом,X можно определить через величины Р , RK ,RP ,rp . Однако значения Р и rp не всегда могут быть определены достаточно точно. Кроме того в Rобщ должно входить, кроме указанных величин, сопротивление подводящих проводов, которое трудно учесть с достаточной степенью точности. Поэтому точность определения X в данном случае будет низкой, несмотря на хорошие возможности метода в целом. Повысить точность измерений можно, если построить потенциометр по схеме рис.4.

В этой схеме компенсация производится дважды. В положении I переключателя II компенсируется известная ЭДС элемента N , в положении 2 производится компенсация неизвестной ЭДС источника X.

Сопротивление RК включается здесь по схеме потенциометра. Как уже отмечалось ранее, при компенсации величина компенсируемой ЭДС  должна равняться падению напряжения на участке АВ, т.е. =IPRAB . Этого можно добиться двумя способами: либо изменяя величину сопротивления RAB , либо изменяя величину IP . Силу тока IP можно регулировать, меняя значение RP . В потенциометре, построенном по схеме рис. 4, компенсации N добиваются изменением величины RP , устанавливая определённый рабочий ток IP , который в дальнейшем остаётся постоянным. Сопротивление RAB при этом должно быть максимальным, т.е. RAB= RК . Тогда согласно (10):

                    (11)

Компенсации Х добиваются изменением величины участка АВ сопротивления RК , подключённого к цепи гальванометра RAB. Так как сопротивление RК включено по схеме потенциометра, то при изменении RAB общее сопротивление цепи источника Р остаётся неизменным и значение = const. При компенсации

       (12)

Взяв отношение (11) и (12), получим :

                       (13)

Откуда:

           (14)

Всё сказанное справедливо для случая, когда вместо Х подключается неизвестное напряжение UX . Таким образом, для определения ЭДС или напряжения необходимо знать отношение двух сопротивлений RAB и RК и значение N . Сопротивления, входящие в окончательный результат, являются образцовыми и могут быть в настоящее время измерены с точностью до сотых долей процента. В качестве источника сравнения N используется обычно нормальный элемент, значение ЭДС которого весьма стабильно и известно с высокой степенью точности.

Значение Р не входит в окончательный результат (14). Однако источник Р всё время обеспечивает наличие IP,  поэтому его ЭДС должна быть достаточно постоянной во времени. Кроме того, так как N и Х равняются падению напряжения на участке АВ цепи этого источника, его ЭДС Р должна превосходить N и Х.


 

А также другие работы, которые могут Вас заинтересовать

49193. Направленные микрофоны 7.61 MB
  Общие понятия о направленных микрофонах. Принцип работы микрофона заключается в том что давление звуковых колебаний воздуха воды или твердого вещества действует на тонкую мембрану микрофона. В свою очередь колебания мембраны возбуждают электрические колебания; в зависимости от типа микрофона для этого используются явление электромагнитной индукции изменение ёмкости конденсаторов или пьезоэлектрический эффект. Наибольшая чувствительность при этом достигается на пути вдоль оси микрофона когда источник размещен прямо перед...
49194. Пути повышение рентабельности предприятия общественного питания 752.37 KB
  Понятие рентабельности Виды рентабельности. Система показателей рентабельности. Анализ рентабельности предприятия.
49195. Сучасні проблеми податкової системи України та шляхи їх подолання 81.23 KB
  Сутність структура та основні принципи побудови податкової системи. Практика та проблематика ефективного функціонування податкової системи в Україні. Основні напрямки реформування податкової системи України.
49196. ПРОЕКТИРОВАНИЕ АНАЛОГО-ЦИФРОВОГО ПРЕОБРАЗОВАТЕЛЯ С USB ВЫХОДОМ 2.14 MB
  Аналого-цифровой преобразователь АЦП согласующий усилитель СУ фильтр нижних частот ФНЧ конвертор преобразователь DCDC гальваническая развязка операционный усилитель ОУ. В ходе курсовой работы необходимо нарисовать функциональную и принципиальную схему аналого-цифрового преобразователя АЦП выбрать микросхему АЦП в соответствии с вариантом тип конвертора USB преобразователи DCDC и микросхемы гальванической изоляции. Задание на курсовую работу В ходе курсового проектирования необходимо разработать функциональную и...
49197. Расчет однофазного сварочного трансформатора 554.54 KB
  Задание на курсовую работу Расчёт электрических величин трансформатора. Расчет конструктивных параметров трансформатора. Расчет основных электрических, магнитных и конструктивных параметров однофазного трансформатора проводится в следующей последовательности
49200. Разработка печатного узла устройства с помощью пакета программ САПР Altium Designer 5.01 MB
  Чтобы создать новую библиотеку необходимо выполнить следующую последовательность действий: Выбрать команду библиотека. выбрать метрическая система единиц единицы Millimetrs ок. в открывшемся окне выбираем Grids выбрать шаг сетки 5 мм.SchLit щелкнуть ПК опции примитивы по умолчанию В списке примитивов выбрать Librry Objects.
49201. Инструментальный цех завода РТО 513.62 KB
  Электрической программой предусмотрено социально-экономическое развитие страны на базе ускорения научно-технического процесса (НТП), а также внедрения энергосберегающих технологий в быту и на промышленных предприятиях.