2781

Электростатическое моделирование электростатического поля

Лабораторная работа

Физика

Цель работы: изучить свойства электростатического поля, изучить метод электростатического моделирования электростатического поля. Теория. Суммарный заряд электрически изолированной системы не может изменяться. Это закон сохранения электрического зар...

Русский

2012-10-19

48 KB

7 чел.

Цель работы: изучить свойства электростатического поля, изучить метод электростатического моделирования электростатического поля.

Теория. Суммарный заряд электрически изолированной системы не может изменяться. Это закон сохранения электрического заряда. Электрический заряд является неотъемлемым свойством некоторых элементарных частиц. Заряд всех элементарных частиц одинаков по абсолютной величине.

Поскольку всякий заряд q образует совокупность элементарных зарядов, он является целым кратным е (qN*e).

Сила взаимодействия двух неподвижных точечных зарядов пропорциональна величине каждого из зарядов и обратно пропорциональна квадрату расстояния между ними. Закон Кулона выражается формулой:

E=F/qпр – эту векторную величину называют напряженностью электрического поля в данной точке. Напряженность электрического поля численно равна силе, действующей на единичный точечный заряд, находящийся в данной точке поля.

E=∑Ei – принцип суперпозиции позволяет вычислить напряженность поля любой системы зарядов. Электрическое поле можно описать с помощью линий напряженности Е, которую также будем называть силовыми линиями. Линии напряженности проводим таким образом, чтобы касательная к ним в каждой точке совпадала с направлением вектора Е.

Поток есть алгебраическая величина, причем знак его зависит от выбора направления нормали к площадке dS.

Определение Гаусса. Поток вектора напряженности электрического поля через замкнутую поверхность равен алгебраической сумме, заключенной внутри этой поверхности зарядов, деленной на ε0:

Потенциал (φ) – электростатического поля носит потенциальный характер и характеризуется особой величиной (Wp/q).

Воображаемая поверхность, все точки которой имеют одинаковый потенциал – эквипотенциальная поверхность.

Напряженность электрического поля равна градиенту потенциала, взятому с обратным знаком: E=-grad φ. Градиент некоторой скалярной величины φ(x, y, z) есть векторная величина со следующими свойствами. Направление градиента совпадает с направлением, в котором при смещении из данной точки функций φ возрастает с небольшой скоростью.


Ход работы. Измерить расстояние ∆l между соседними поверхностями, соответственными, например 10В и 8В от центра силовых линий. Определить напряженность поля в пяти точках, равноудаленных от обеих поверхностей соответственно. Числовые значения занести в таблицу. Вычислить потоки вектора напряженности N1 и N2 через площадки S1 и S2 размерам 1x1 см. Для наглядности площадку S1 помещают перпендикулярно силовым линиям, а площадку S2 под углом α. Поток вектора напряженности через каждую площадку вычисляется по формуле: N=E*S*cos α. Где Е – напряженность поля в центре площадки S, α – угол между нормалью к площадке и направлением вектора E. Значение N занести в таблицу.

Форма электродов

Номер точки

φ, В

l, м

Е, В/м

N, Вм

1

2

3

4

5

6

Шар-шар

1

2

0.056

35.71

0.003

2

0.049

40.8

0.0038

3

0.045

44.4

0.0042

4

0.046

43.48

0.004

5

0.055

36.36

0.003

Пластина-пластина

1

2

0.04

50

0.005

2

0.037

54

0.0051

3

0.035

57

0.0052

4

0.037

54

0.0051

5

0.04

50

0.005

Вывод: В результате проделанной работы мы изучили свойства электростатического поля и изучили метод электростатического моделирования поля. Изучили устройство пантографа.


N

l


 

А также другие работы, которые могут Вас заинтересовать

66831. Молекулярна фізика. Основні формули 1.02 MB
  Сили поверхневого натягу діють на внутрішню та зовнішню поверхні трубки. Враховуючи невелику товщину стінок трубки, можна вважати радіуси кривини поверхонь рідини біля стінок капіляра однаковими за величиною всередині та ззовні трубки.
66832. ЕЛЕКТРИКА І МАГНЕТИЗМ 357.5 KB
  Змістом контрольних робіт є розв'язування певної кількості відповідних задач. Вміння розв'язувати задачі є одним з головних критеріїв оволодіння фізикою. І саме розв'язування задач викликає найбільші труднощі у студентів.
66833. Електромагнетизм. Магнітне поле електричного струму 1.27 MB
  Закон Біо-Савара-Лапласа в скалярному і векторному вигляді відповідно: де dB – магнітна індукція поля, яке створюється елементом провідника з струмом; - магнітна проникність; - магнітна постійна, яка дорівнює 410-7 Гн/м ; - вектор, який дорівнює довжині dl провідника і співпадає з напрямом струму...
66834. ХВИЛЬОВА І КВАНТОВА ОПТИКА, ФІЗИКА АТОМА, ОСНОВИ КВАНТОВОЇ МЕХАНІКИ, ФІЗИКА АТОМНОГО ЯДРА 351.5 KB
  Матеріал розділів поділено на параграфи. На початку кожного з них подано короткий перелік формул і законів, які стосуються розв'язування задач певної теми. Ці формули дозволяють студентові скласти уявлення про обсяг теоретичного матеріалу, який необхідно опрацювати...
66835. ОСНОВИ КВАНТОВОЇ МЕХАНІКИ. ЯДЕРНА ФІЗИКА 490 KB
  Атом водню за теорією Бора Основні формули Момент імпульсу електрона на стаціонарних орбітах: L = m vn rn = nħ n = 123.1 де m маса електрона rn радіус орбіти vn швидкість електрона на орбіті n головне квантове число ħ постійна Дірака: ħ= h 2 де h постійна Планка. Енергія електрона що знаходиться на nй орбіті...
66837. Построение продольного и поперечного профилей трассы 1.23 MB
  По результатам нивелирования вычисляют высотные отметки точек трассы. Отметки используют для построения продольного и поперечных профилей. В табл. 61 приведены отметки реперов, пикетных точек и точек поперечного створа по трассе, соединяющей Бетонный завод с Песчаным карьером.