27834

Трансформаторы тока в схемах релейной защиты

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

F1 F2 = Fном I1ω1 I2ω2 = Iномω1 разделив на ω2: I`1 I2 = I`ном следовательно I`1 = I2 I`ном Если ТТ идеальный Iном = 0 I`1 = I2 это хорошо но не возможно сделать без Iном т. Для идеального ТТ nт = nв Векторная диаграмма для ТТ Угол γ определяется потерями в стали трансформатора Е2 опережает Ф на 90 I2 отстает от Е2 на угол φ который определяется R и Х нагрузки и вторичной обмотки z2 и zн Угол δ угловая погрешность ТТ ΔI токовая...

Русский

2013-08-20

162.5 KB

12 чел.

1.Трансформаторы тока в схемах релейной защиты.

Устройство трансформатора тока

                                                                

Маркировка концов первичной обмотки ТТ производиться произвольно. За начало вторичной обмотки ТТ принимается тот конец из которого мгновенный ток выходит в нагрузку, в то время как в первичной обмотке ток I1 направлен от начала к концу.

Т-образная схема замещения ТТ.

                                                                    

z`1 – не влияет на распределение тока, поэтому переходим к сокращенной схеме замещения.

F1F2 = Fном

I1ω1I2ω2 = Iномω1    разделив на ω2: I`1I2 = I`ном следовательно I`1 = I2 + I`ном

Если ТТ идеальный Iном = 0

I`1 = I2 – это хорошо, но не возможно сделать без Iном, т.к. он идет на проводку основного магнитного потока, с другой стороны это погрешность, которую надо уменьшать.

- для идеального ТТ

- витковый коэффициент трансформации ТТ

- номинальный коэффициент трансформации ТТ.

Для идеального ТТ nт = nв  

Векторная диаграмма для ТТ

                                                         

          

        

Угол γ определяется потерями в стали трансформатора

Е2 – опережает Ф на 90°

I2 – отстает от Е2 на угол φ, который определяется R и Х нагрузки и вторичной обмотки (z2 и zн)

Угол δ – угловая погрешность ТТ

ΔI – токовая погрешность ТТ    ΔI = I`1I2 – арифметическая разность

Геометрическая разность Iном = I`1I2- полная погрешность ТТ

ƒi =  - относительная токовая погрешность

ε =  - относительная полная погрешность.

Если I2 опережает I`1 – то «+» погрешность, если наоборот то «-»

Причиной всех погрешностей является Iном.

Если ƒi ≤ 10%, ε ≤ 10%, δ ≤ 7°

Iном ≤ 0.1I1

Погрешность есть, но мы укладываемся в правильную работу трансформатора. Это правило подтверждается 10% погрешностью.

                                                                              

Z = Zприб + Zпров + Zр + Zк

Z  ∞ следовательно I2 = 0 – режим ХХ

I`1 = I`ном

Режим ХХ – режим, запрещенный для ТТ. Iном – огромен и циркулирует по сердечнику, чем вызывает огромные потери в стали, что приводит к перегреву ТТ. Ф  I`ном вызывает на зажимах вторичной обмотки огромное значение Е2 (десятки кВ), может произойти пробой вторичной обмотки. На этот случай и предусмотрено заземление вторичной обмотки ТТ.

Погрешности здесь огромные, т.к. Iном большой. На случай пробоя вторичные обмотки тоже заземляют.

Режим КЗ

Z = 0, I`1  I2, Iном  0

Погрешность min, самый благоприятный режим работы ТТ.

№6 Параметры, влияющие на уменьшение Iном ТТ.

Iном состоит из активной и реактивной составляющей:

      

Iан – потери на гистерезис и на вихревые токи.

Магнитопровод  ТТ выполнен из шихтованной стали, имеющей активные потери. Для уменьшения реактивной составляющей нужно уменьшить поток Ф.

                     

                                                                    

 

L – длина сердечника ТТ

Q – поперечное сечение

μ – магнитная проницаемость стали сердечника

Чтобы уменьшить Rн надо:

  1.  уменьшить длину.
  2.  увеличить поперечное сечение
  3.  взять сталь с высокой магнитной проницаемостью.

Следовательно для уменьшения погрешности нужно ограничить величину магнитного потока, не допуская насыщения магнитного потока.

Нужно эксплуатировать ТТ до т. перегиба графика намагничивания, потому что за т. перегиба идет резкое увеличение Iном ТТ, а значит и погрешность.

 


Для уменьшения Ф нужно:

  1.  уменьшить Z2н
  2.  увеличить кратность первичного тока  , I1 – ток проход. линий по защищаемому элементу.

    I1ном – номинальный первичный ток ТТ.

Для уменьшения погрешности ТТ Iном должен иметь минимальную величину и работать в прямолинейной части своей характеристики намагничивания.

Это условие обеспечивается:

  1.  Правильным выбором нагрузки, включенную во вторичную обмотку ТТ (Z).
  2.  Уменьшение величины I2 за счет увеличения кратности первичного тока I, что достигается выбором соответствующего коэффициента трансформации nт.
  3.  Совершенствование конструктивных параметров ТТ.

                                                                           

Iкз = ia + in

iа – сильно намагниченный сердечник. Следовательно в переходных режимах ТТ работает с большой погрешностью. Это особенно актуально для быстродействующих защит, которые начинают действовать до того как затухнет апериодическая составляющая Iкз.

Классы точности ТТ

0,2 – точные эл. приборы.

0,5 – счетчики контроля эл. энергии.

1 – все остальные технические приборы.

3 – для релейной защиты.

10 – для релейной защиты.

При I1 > 1,2I1ном погрешности ТТ выходят за пределы данного класса, следовательно для РЗ точных ТТ нет.

Класс точности не может служить основанием для выбора ТТ РЗ.

Выбор ТТ для РЗ.

В справочниках можно найти кривые предельной кратности ТТ, которые мы хотим поставить в РЗ.

В паспорте указываются:

1. Кривые предельной кратности.

2. Номинальный предел кратности.

3. Типовые кривые намагничивания.

                                                                                     

К10 – 10 % погрешность.   

Z2доп – допустимая вторичная нагрузка

К10ном – номинальная предельная кратность

Везде на кривой ТТ будет работать в режиме 10 % погрешности.

Типовые кривые намагничивания и параметры ТТ:

  1.  Номинальное число витков w1.
  2.  Средняя длина магнитного пути
  3.  Сечение сердечника
  4.  Сопротивление вторичной обмотки

Условия выбора ТТ:

  1.  Uтт  > Uраб.уст.
  2.  I1номIраб.мах.уст
  3.  ТТ должен обладать термической стойкостью.
  4.  Эл. динамическая стойкость
  5.  Номинальный предел кратности К10 =

где Ка – коэффициент, учитывающий апериодическую составляющую Iкз.

α – учитывает несовпадение типовой характеристики намагничивания

с характеристикой намагничивания того ТТ, который мы ставим в РЗ.

Ка = 2 – для быстродействующих защит

Ка = 1,5 – для менее быстродействующих защит

Ка = 1 – для медленнодействующих защит или для РЗ включенных через БНТ (НТТ)

К10 > К10мах то ТТ подходит

Если нет, то нужно выбирать дв. ТТ с другим пределом кратности, большим коэффициентом трансформации nт, последовательно включить ТТ.

Для эл. измерительных приборов выбор такой же, кроме нахождения К10мах

Если  , то ТТ подходит


 

А также другие работы, которые могут Вас заинтересовать

82647. Разработка алгоритмов безопасной маршрутизации в беспроводных сетях 649.62 KB
  В данной работе рассмотрены принципы построения и функционирования беспроводных сетей, проблемы безопасности при передаче данных. Структура и свойства, стандарты, способы передачи данных в беспроводных сетях. Методы и типы маршрутизации.
82648. ДІАГНОСТИКА БЕНЗИНОВИХ ДВИГУНІВ З ЕЛЕКТРОННИМИ СИСТЕМАМИ КЕРУВАННЯ 9.02 MB
  Проведено аналіз існуючих систем керування бензиновими двигунами та їх складових частин. Викладено методику аналізу та вибору ефективної технології та обладнання для діагностики технічного стану електронних систем керування бензиновими двигунами.
82649. РЕКОМЕНДАЦИИ ПО СОВЕРШЕНСТВОВАНИЮ ВНУТРИОРГАНИЗАЦИОННОГО МАРКЕТИНГА НА ПРЕДПРИЯТИИ «ДЁКЕ УРАЛ» 292.5 KB
  Цель выпускной квалификационной работы состоит в исследовании и научном обосновании теоретических положений и практических рекомендаций по совершенствованию внутриорганизационного маркетинга на предприятии, учитывая специфику деятельности ООО «Дёке Урал» и обеспечивающих повышение его конкурентоспособности в целом.
82650. Методи підвищення технічної експлуатації суднових газотурбонагнетачів 3.04 MB
  Одним з основних і розповсюджених способів підвищення потужності дизелів є газотурбінний наддув за допомогою якого збільшується заряд повітря в робочих циліндрах що в свою чергу дозволяє збільшити циклову подачу палива. Дизеля надійні в роботі прості в обслуговуванні та ремонті мають обмежені витрати...
82651. КОНТРОЛЬ ХОЗЯЙСТВЕННЫХ ОПЕРАЦИЙ ПО УЧЕТУ РАСЧЕТОВ ПО ЗАРАБОТНО ПЛАТЕ НА ПРИМЕРЕ КУПСХП «ОСВЕЙСКИЙ» 1.58 MB
  Современная теория оплаты труда Управленческие теории Теории мотивации трудового поведения управление человеческими ресурсами ценностно-ориентированный менеджмент корпоративная социальная ответственность Новые течения Марксизм постиндустриальной эпохи...
82652. Анализ развития ипотечного кредитования российскими банками (на примере Ярославского ФКБ-РЦ «СЕВЕРГАЗБАНК») 2.95 MB
  Актуальность темы дипломной работы на современном этапе развития экономики Российской Федерации связана с тем, что рост инфляции, дефицит и высокая стоимость долгосрочной ликвидности (при отсутствии краткосрочной) — все это поставило сегодня ипотечное кредитование на грань выживания.
82653. Разработка программного обеспечения для дистанционного управления компьютерами, включенными в локальную сеть 1.61 MB
  Целью работы является создание программного комплекса для дистанционного контроля, диагностики и слежения с целью: снижения затрат на обслуживание каждой машины; экономии электроэнергии; сокращения времени реагирования на проблемы пользователей; сокращения обслуживающего персонала...
82654. ПРОБЛЕМЫ ИПОТЕЧНОГО КРЕДИТОВАНИЯ В ДЕЯЕЛЬНОСТИ КОММЕРЧЕСКОГО БАНКА НА ПРИМЕРЕ ЯРОСЛАВСКОГО ФКБ-РЦ «СЕВЕРГАЗБАНК» 2.92 MB
  Цель работы - рассмотрение системы ипотечного кредитования в Российской Федерации и прогноз перспектив ипотечного кредитования в коммерческом банке. В ходе данной работы подробно рассмотрены в I главе сущность и понятие ипотеки основные нормативно-правовые акты ипотечного кредитования...
82655. Расчет нагрузок и определение параметров элементов в СЭС 643.28 KB
  От силового пункта СП 1 получают питание: n1 вытяжных вентиляторов мощностью Рн1 кВт n2 конвейеров мощностью Рн2 кВт n3 водонагревателей мощностью Рн3 кВт n4 полировальных станков мощностью Рн4 кВт n5 шлифовальных станков мощностью Рн5 кВт n6 шлифовальных станков мощностью Рн6 кВт.