27845

Поперечная дифференциальная токовая направленная защита (принцип действия, схема и особенности работы)

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Поперечная дифференциальная токовая направленная защита ДТНЗ Комплект Q1 – Q3 ставиться такой же и на Q2 – Q4 Icp Iнбмахрасч Icp =Котс ∙ Iнбмахрасч При К1: Ip Icp Lк – зона каскадного действия ≤25 L Uост3 = Up Ucpmin – мертвая зона вблизи установки комплекта защиты Lмз ≤ 10 L по напряжению для реле направления мощности к контактам реле КА1 Это для схемы с опережением. Дополнительные контакты служат для разгрузки контактов реле. Реле направления мощности включается по 90 схеме. В качестве реле направления мощности...

Русский

2013-08-20

154 KB

6 чел.

15. Поперечная дифференциальная токовая направленная защита (принцип действия, схема и особенности работы).

Поперечная дифференциальная токовая направленная защита (ДТНЗ)

Комплект Q1 – Q3 ставиться такой же и на Q2 – Q4

Icp > Iнбмахрасч      

Icp отсIнбмахрасч      

При К1: Ip > Icp

Lк – зона каскадного действия (≤25% L)

Uост(3) = Up < Ucpmin – мертвая зона вблизи установки комплекта защиты

Lмз ≤ 10% L по напряжению

(для реле направления мощности)

к контактам реле КА1

Это для схемы с опережением. Дополнительные контакты служат для разгрузки контактов реле.

ПДТЗ приобретает способность определять поврежденную линию только после включения в ее схему органа направления мощности и она становиться ПДТНЗ. Она ставиться с 2 сторон двух параллельных линии, присоединяется к шинам через выключатели. Реле направления мощности включается по 90° схеме.

Таким образом защита имеет два органа: пусковой и избирательный. В качестве реле направления мощности используется реле двухстороннего действия РБМ-271.

При КЗ в К4 комплект слева действует, отключая первую линию (с большей мощностью КЗ) нижний контакт реле направления мощности, хотя тоже положительный знак т.к меньшая мощность КЗ.

После первого срабатывания первый комплект блокируется, т.к. оперативный положительный ток подается через блокировочный контакт Q1.1, Q3.1, а они размыкаются. Комплект справа реле НМ замыкает верхние контакты и отключает  Q2. У Q4 отрицательная мощность КЗ и блокируется правый комплект. Аналогично рассматривается повреждения на W2.

Если КЗ в К1 – зона каскадного действия защиты. Разности токов не хватит для срабатывания левого комплекта. Срабатывает правый комплект – отключается Q2, а затем левый – отключается Q1. Время работы РЗ увеличивается в 2 раза (это плохо). Т.к. зона каскадного действия ПДТНЗ совпадает с МЗ для ПДТЗ, то расчет ее длины происходит по аналогичной формуле. Если вблизи места установки комплекта происходит трехфазная КЗ, то остаточное напряжение КЗ будет равно Up < Ucpmin для реле НМ это есть МЗ для РНМ, а значит не будет работать комплект защиты.

Зона каскадного действия для левого комплекта совпадает с МЗ для правого комплекта и наоборот. Следователь при КЗ в точке общие для МЗ и зоны каскадного действия не сработает не левый не правый комплект и РЗ откажет в действии. Защита после первого срабатывания блокируется. Эту блокировку можно сделать с некоторым опережением по размыканию главных контактов выключателя, т.е. защита должна быть блокирована когда контакты выключателя разомкнуться. Если не будет опережения то произойдет неправильное отключение первой линии выключателем Q1. R1 и R2 ограничивают токи когда нет блокировки.

Расчет уставок ПДТНЗ

1.

КОДНКа≠1 – реле направленной мощности.

2.  - отстройка КА

3.  - в сети с большими токами замыкания на землю

Iсз>Iнбмах

Схема 110 кВ и более с заземленной нейтралью. К1: у правого комплекта защиты в зоне каскадного действия: отключается Q3 затем чтобы W1 не вышло нужно выполнение третье условие.


 

А также другие работы, которые могут Вас заинтересовать

81459. Основные углеводы животных, их содержание в тканях, биологическая роль. Основные углеводы пищи. Переваривание углеводов 160.55 KB
  Переваривание углеводов Гликоген – главный резервный полисахарид высших животных и человека построенный из остатков Dглюкозы. Его молекула построена из ветвящихся полиглюкозидных цепей в которых остатки глюкозы соединены α1– 4гликозидными связями. При гидролизе гликоген подобно крахмалу расщепляется с образованием сначала декстринов затем мальтозы и наконец глюкозы. Крахмал разветвлённый полисахарид состоящий из остатков глюкозы гомогликан.
81460. Глюкоза как важнейший метаболит углеводного обмена. Общая схема источников и путей расходования глюкозы в организме 139.63 KB
  Общая схема источников и путей расходования глюкозы в организме Глюкоза является альдогексозой. Циклическая форма глюкозы предпочтительная в термодинамическом отношении обусловливает химические свойства глюкозы. Расположение Н и ОНгрупп относительно пятого углеродного атома определяет принадлежность глюкозы к D или Lряду. В организме млекопитающих моносахариды находятся в Dконфигурации так как к этой форме глюкозы специфичны ферменты катализирующие её превращения.
81461. Аэробный распад — основной путь катаболизма глюкозы у человека и других аэробных организмов. Последовательность реакций до образования пирувата (аэробный гликолиз) 220.81 KB
  Все ферменты катализирующие реакции этого процесса локализованы в цитозоле клетки. Реакции аэробного гликолиза Превращение глюкозо6фосфата в 2 молекулы глицеральдегид3фосфата Глюкозо6фосфат образованный в результате фосфорилирования глюкозы с участием АТФ в ходе следующей реакции превращается в фруктозо6фосфат. В ходе этой реакции катализируемой фосфофруктокиназой фруктозо6фосфат превращается в фруктозо16бисфосфат. Продукты реакции альдольного расщепления изомеры.
81462. Распространение и физиологическое значение аэробного распада глюкозы. Использование глюкозы для синтеза жиров в печени и в жировой ткани 103.86 KB
  Использование глюкозы для синтеза жиров в печени и в жировой ткани. Основное физиологическое назначение катаболизма глюкозы заключается в использовании энергии освобождающейся в этом процессе для синтеза АТФ. Энергия выделяющаяся в процессе полного распада глюкозы до СО2 и Н2О составляет 2880 кДж моль.
81463. Анаэробный распад глюкозы (анаэробный гликолиз). Гликолитическая оксиредукция, пируват как акцептор водорода. Субстратное фосфорилирование. Распространение и физиологическое значение этого пути распада глюкозы 121.38 KB
  Реакции анаэробного гликолиза При анаэробном гликолизе в цитозоле протекают все 10 реакций идентичных аэробному гликолизу. Восстановление пирувата в лактат катализирует лактатдегидрогеназа реакция обратимая и фермент назван по обратной реакции. С помощью этой реакции обеспечивается регенерация ND из NDH без участия митохондриальной дыхательной цепи в ситуациях связанных с недостаточным снабжением клеток кислородом. Таким образом значение реакции восстановления пирувата заключается не в образовании лактата а в том что данная...
81464. Биосинтез глюкозы (глюконеогенез) из аминокислот, глицерина и молочной кислоты. Взаимосвязь гликолиза в мышцах и глюконеогенеза в печени (цикл Кори) 215.46 KB
  Глюконеогенез процесс синтеза глюкозы из веществ неуглеводной природы. Его основной функцией является поддержание уровня глюкозы в крови в период длительного голодания и интенсивных физических нагрузок. Эти ткани могут обеспечивать синтез 80100 г глюкозы в сутки.
81465. Представление о пентозофосфатном пути превращений глюкозы. Окислительные реакции (до стадии рибулозо-5-фосфата). Распространение и суммарные результаты этого пути (образование пентоз, НАДФН и энергетика) 135.5 KB
  Окислительные реакции до стадии рибулозо5фосфата. Распространение и суммарные результаты этого пути образование пентоз НАДФН и энергетика Пентозофосфатный путь называемый также гексомонофосфатным шунтом служит альтернативным путём окисления глюкозо6фосфата. Пентозофосфатный путь состоит из 2 фаз частей окислительной и неокислительной.
81466. Свойства и распространение гликогена как резервного полисахарида. Биосинтез гликогена. Мобилизация гликогена 173.81 KB
  Биосинтез гликогена. Мобилизация гликогена. Таким образом в молекуле гликогена имеется только одна свободная аномерная ОНгруппа и следовательно только один восстанавливающий редуцирующий конец.
81467. Особенности обмена глюкозы в разных органах и клетках: эритроциты, мозг, мышцы, жировая ткань, печень 110.65 KB
  Метаболизм глюкозы в эритроцитах. В эритроцитах катаболизм глюкозы обеспечивает сохранение структуры и функции гемоглобина целостность мембран и образование энергии для работы ионных насосов. Около 90 поступающей глюкозы используется в анаэробном гликолизе а остальные 10 в пентозофосфатном пути.