2797

Изучение простейшей электрической цепи переменного тока

Лабораторная работа

Физика

Изучение простейшей электрической цепи переменного тока. Цель работы: Теоретическое и экспериментальное изучение простейшей электрической цепи. Краткое теоретическое обоснование: Мощность NИ развиваемая источником энергии Работа AИ совершае...

Русский

2012-10-19

90.5 KB

24 чел.

Изучение простейшей электрической цепи переменного тока.

Цель работы:

Теоретическое и экспериментальное изучение простейшей электрической цепи.

II.Краткое теоретическое обоснование:

Мощность NИ развиваемая источником энергии

Работа AИ  совершаемая источником энергии по перемещению заряда q по замкнутому контуру, и ток I в замкнутой цепи, для постоянного тока определяются следующими уравнениями

AИ = qε 

                                     I = ε / (R + RВ)                           (8.6)

Мощность NИ , развиваемая источником энергии равна

             NИ = AИ / t = q • ε / t = (q / t) • ε = I • ε             (8.7)

Из уравнений (8.6) и (8.7) найдём NИ

                                NИ = ε2 / (R + RВ)                            (8.8)

При R = 0  NИ = NИ max = ε2 / RВ   

При R = ∞ NИ = 0

При увеличении сопротивления R мощность NИ уменьшается от  NИ max  до 0 (по гиперболическому закону).

         Примечание: Принято говорить, что при уменьшении сопротивления нагрузки величина нагрузки на источник энергии увеличивается.

Мощность N потребляемая нагрузкой

Работа А перемещения заряда q по нагрузке

A = qU

Мощность NИ потребляемая нагрузкой определяется уравнением (8.9)

                 N = A / t = q • U / t = q / t •U = I • U             (8.9)

По закону Ома

                                        U = RI                                    (8.10)

Из уравнений (8.6), (8.9), и (8.10)

N = I • U = I • R • I = I2 • R = (ε2 / (R + RВ)2) • R  

                              N = (ε2 / (R + RВ)2)                              (8.11)     

По уравнению (8.11) проведём анализ зависимости мощности N, потребляемой нагрузкой, от сопротивления нагрузки R. При R = 0 и R = ∞, N = 0. Следовательно, зависимость N = N(R) должна иметь максимум. Найдём значение, при котором N = Nmax 

dN / dR = ε2 (1(R + RВ)2 R2(R + RВ)) / (R + RВ)4 = 0

(R + RВ) − 2R = 0

                                          R = RВ                                     (8.12)           

Максимум зависимости N = N(R) будет при R = RВ   

Подставим значение R = RВ в уравнение (8.11). Тогда получим:   

               N = Nmax = ε2 (RB / (RB + RB)2) = ε2 / 4RB                            (8.13)

Вид зависимости N = N(R) представлен па рис. 8.9

По графику рис. 8.9 можно найти внутреннее сопротивление источника энергии RB и максимальную мощность Nmax . В соответствии с уравнением (8.13) можно найти э.д.с. источника

ε = √ 4RB Nmax       (8.14)

Коэффициент полезного действия

Коэффициент полезного действия (КПД) источника определяется как отношение полезной мощности, выделяющейся на нагрузку (внешняя часть цепи), и полной мощности выделяющейся во всей цепи. Полная мощность складывается из полезной мощности N и мощности потерь NB на внутреннем сопротивлении проводника.

Nполная = N + NВ

NB выражается аналогично N. Таким образом на схеме рис. 8.7 сопротивление нагрузки и внутреннее сопротивление источника соединены последовательно, то через них протекает одинаковый ток. Значит

NB = I2 RB = ε2 / (R + RB) RB .  Тогда

Nполная = ε2 / (R + RB) R + ε2 (R + RB) RB = ε2 / (R + RB) = NИ

То есть полная мощность выделяющейся на всей  цепи равна мощности развиваемой источником. Таким образом, получаем выражение для КПД

               η = N / Nполная = N / NU = IU / = U / ε              (8.15)

U = RI ; I = ε / (R + RB) ; U = ε (R / (RB + R))

Из уравнения (8.15) получим:

                                   η = R / (R + RB)                                (8.16)

Из уравнения (8.16) следует, что

При    R = 0    η = 0 ;

При    R = ∞    η = 1 .

Следовательно, η возрастает от 0 до 1 при возрастании R от 0 до ∞ .


III.Рабочие формулы и единицы измерения.

NИ = AИ / t = q • ε / t = (q / t) • ε = I • ε              N = A / t = q • U / t = q / t •U = I • U

       ε = √ 4RB Nmax                                                                 η = N / Nполная = N / NU = IU / Iε = U / ε    

IV.Схема установки. V.Измерительные приборы и принадлежности.

В лабораторной установке собрана простейшая электрическая цепь. Напряжение между проводниками измеряется вольтметром, а ток в цепи измеряется миллиамперметром. Сопротивление вольтметра значительно больше сопротивления нагрузки, поэтому можно считать, что ток через вольтметр не идет. Сопротивление миллиамперметром значительно меньше сопротивления нагрузки, поэтому можно считать, что падения напряжения на миллиамперметре нет.

VI.Результаты измерения.

№ измерения

I,

мА

U,

В

R,

кОм

NИ,

мВт

N,

мВт

η

1

17,2

55,1

3,2

1290

948

0,7

2

21,9

49,5

2,3

1643

1084

0,7

3

26

43,9

1,7

1950

1141

0,6

4

31,3

37,5

1,2

2348

1174

0,5

5

36

32

0,9

2700

1152

0,4

6

40,7

26

0,6

3053

1058

0,3

7

45,4

20

0,4

3405

908

0,3

8

50,1

13,5

0,3

3758

676

0,2

VII. Черновые записи и вычисления.

R = 55,1 / 17,2 = 3,2           NИ = 17,2 • 75 = 1290           N = 17,2 • 55,1 = 948

R = 49,5 / 21,9 = 2,3           NИ = 21,9 • 75 = 1643           N = 21,9 • 49,5 = 1084

R = 43,9 / 26 = 1,7              NИ = 26 • 75 = 1950              N = 26 • 43,9 = 1141

R = 37,5 / 31,3 = 1,2           NИ = 31,3 • 75 = 2348           N = 31,3 • 37,5 = 1174

R = 32 / 36 = 0,9                 NИ = 36 • 75 = 2700              N = 36 • 32 = 1052

R = 26 / 40,7 =0,6               NИ = 40 • 75 = 3053              N = 40 • 26 = 1158

R = 20 / 45,4 = 0,4              NИ = 45,4 • 75 = 3405           N = 45,4 • 20 = 908

R = 13,5 / 50,1 = 0,3           NИ = 50,1 • 75 = 3758           N = 50,1 • 13,5 = 676

ε = √4 • 1,2 • 1174 = 75

η = 55,1 / 75 = 0,7              η = 37,5 / 75 = 0,5                 η = 20 / 75 = 0,3

η = 49,5 / 75 = 0,7              η = 32 / 75 = 0,4                    η = 13,5 / 75 = 0,2

η = 43,9 / 75 = 0,6              η = 26 / 75 = 0,3

VIII. Основные выводы.

Мы теоретически и экспериментально изучили простейшую линейную электрическую цепь.

IX. Графики.


 

А также другие работы, которые могут Вас заинтересовать

84247. ОТТОРЖЕНИЕ ТРАНСПЛАНТАНТА 24.04 KB
  При пересадке бессосудистых трансплантантов реакция иммунологического отторжения не появляется так как отсутствие кровообращения в трансплантанте предотвращает контакт иммунных клеток с антигенами а для развития иммунного ответа необходимо соприкосновение антигена с клетками иммунной системы Трансплантационные антигены антигены гистосовместимости. Иммунологическая реактивность против пересаженных клеток может быть направлена против большого количества антигенов на поверхностной мембране клеток. Антигены на поверхности клеток тканей: ...
84248. АУТОИММУННЫЕ БОЛЕЗНИ 22.55 KB
  Механизмы вовлеченные в процессы повреждения клеток при аутоиммунных болезнях включают II III и IV типы гиперчувствительности. II тип цитотоксический гиперчувствительности механизм ответственный за большое количество органоспецифических болезней типа аутоиммунной гемолитической анемии и простой пузырчатки. Тклеточная прямая цитотоксичность является доминирующим механизмом повреждения клеток даже при наличии антител против фолликулярных клеток в крови которые вероятно способствуют некрозу клеток путем активации II типа...
84249. НЕДОСТАТОЧНОСТЬ ИММУННОГО ОТВЕТА 24.98 KB
  Диагноз может подтверждаться соответствующими иммунологическими тестами которые включают в себя: определение уровней иммуноглобулинов сыворотки и уровня комплемента; изучение периферических лимфоцитов крови; изучение биопсийного материала лимфатических узлов. При аплазии агенезии тимус отсутствует полностью при гипоплазии размеры его уменьшены деление на кору и мозговое вещество нарушено число лимфоцитов резко снижено. Тяжелый комбинированный иммунодефицит ТКИ характеризуется дефектом стволовых лимфоидных клеток что приводит к...
84250. Микроскопические грибы, их особенности 34.9 KB
  Ранее считали что грибы занимают промежуточное положение между царствами растений и животных так как ряд признаков сближает их как с растениями так и с животными. В настоящее время грибы выделены в отдельное царство Mycot которое насчитывает около 100 тыс. Грибы широко распространены в природе.
84251. Размножение грибов 113.72 KB
  Строение высших грибов: а оидии; б хламидоспоры. В этом случае на определенном этапе вегетативного размножения грибов образуются специальные плодоносящие гифы воздушного мицелия. У низших грибов споры формируются внутри шаровидных мешочков спорангиев внутри которых формируются внутренние споры эндоспоры.
84252. Классификация грибов. Характеристика наиболее важных представителей различных классов 121.81 KB
  Характеристика наиболее важных представителей различных классов Грибы относятся к царству Mycot которое делится на два отдела в зависимости от наличия жесткой клеточной стенки: отдел Myxomycot слизевики и отдел Eumycot истинные грибы. К этому классу относятся низшие грибы имеющие несептированный многоядерный мицелий. К фикомицетам относятся мукоровые грибы которые широко распространены в природе. Грибы рода Мисоr рис.
84253. Дрожжи. Их формы, размеры. Размножение дрожжей. Принципы классификации дрожжей 109.75 KB
  Принципы классификации дрожжей Дрожжи высшие грибы утратившие способность образовывать мицелий и превратившиеся в результате этого в одноклеточные организмы. Несколько реже встречаются цилиндрические палочковидные грушевидные и лимоновидные дрожжи. Почкованием обычно размножаются дрожжи овальной формы. Делением размножаются дрожжи цилиндрической формы.
84254. Отличительные признаки вирусов 31.92 KB
  Эти организмы получили название фильтрующие вирусы а затем просто вирусы. Вирусы обладают следующими характерными особенностями отличающими их от других организмов. Вне живой клетки вирусы ведут себя как объекты неживой природы например способны кристаллизоваться.
84255. Строение, размеры, формы, химический состав вирусов и фагов. Классификация вирусов 37.28 KB
  Классификация вирусов формы химический состав вирусов и фагов. Классификация вирусов Вирусная частица вирион состоит из спирально закрученной нуклеиновой кислоты ДНК или РНК покрытой снаружи белковой оболочкой капсидом. Содержание нуклеиновой кислоты и белка у разных вирусов неодинаковое.