28000

Почвенно-биотический комплекс как основа агроэкосистем. Биогеоценотическая деят-ть микробного биокомплекса и ее экологическое значение. Биоиндикация, ее достоинства и недостатки

Доклад

Лесное и сельское хозяйство

Численность микроорганизмов сильно колеблется в зависимости от почвенноэкологических факторов. Роль микроорганизмов в круговороте веществ. Практически нет ни одного элемента который не подвергался бы воздействию микроорганизмов или их метаболитов. Минеральная часть почвы разрушается под воздействием различных неорганических и органических кислот щелочей ферментов и других соединений продуктов жизнедеятельности почвенных микроорганизмов.

Русский

2013-08-20

15.6 KB

114 чел.

Почвенно-биотический  комплекс  как  основа  агроэкосистем.  Биогеоценотическая  деят-ть

микробного  биокомплекса  и  ее  экологическое  значение.  Биоиндикация,  ее  достоинства  и

недостатки.

Почвенная  биота.  Почва  —  сложнейшая  система,  одним  из  основных  функциональных

компонентов  которой  являются  населяющие  ее  живые  организмы.  От  деятельности  этих

организмов зависят характер и интенсивность биологического круговорота веществ, масштабность

и интенсивность фиксации основного биогенного элемента — атмосферного азота, способность

почвы к самоочищению и пр.

В  последнее  время  значение  почвенной  биоты  существенно  возросло,  и  не  только  в  связи  с

незаменимой  ролью  ее  в  формировании  почвенного  плодородия.  Почвенный  покров

представляет собой самостоятельную земную оболочку — педосферу.

Состав ПБК. В процессе превращения веществ и формирования потоков энергии огромную роль

играют населяющие  почву  живые  организмы,  составляющие  ПБК,  без  которого  нет  и  не  может

быть  почвы.  ПБК  представлен  весомой  (по  массе)  и  разнообразной  группой  организмов.  В  1г

почвы  содержится  3...90  млн  бактерий,  0,1...35  млн  актиномицетов,  8...  1000  тыс.

микроскопических грибов, 100 тыс. водорослей, 1,5...6 млн простейших.  

Характеристика  микробного  комплекса.  Микроорганизмы  —  наиболее  изученная  группа

почвенного бионаселения, что связано с выдающимися работами академика Е. Н. Мишустина и

его учеников.

Микроскопическое  население  почвы  чрезвычайно  велико  и  разнообразно.  Основные  группы

почвенного  микронаселения:  бактерии,  грибы,  актиномице-  ты,  многочисленные  водоросли.

Численность  микроорганизмов  сильно  колеблется  в  зависимости  от  почвенно-экологических

факторов.  

Роль  микроорганизмов  в  круговороте  веществ.  Микроорганизмы  играют  основную  роль  в

круговороте  веществ  в  биогеоценозах,  минерализуя  органические  остатки  и  замыкая  таким

образом биологические циклы экосистем.

Ежегодно на сушс синтезируется огромное количество фитомассы — (115... 117) 109 т, из которой

на  долю  опада  приходится  (20...50)  109  т.  Часть  фитомассы  (6...20  %)  поедают  животные  и

возвращают в почву с экскрементами (10...60%). Дополняют биомассу прижизненные выделения

корней  и  сама  корневая  система,  составляющая  20...90  %  фитомассы  растений.  Характер  и

интенсивность  биологического  круговорота  зависят  от  трех  главных  факторов:  состава

растительности,  гидротермического  режима  и  комплекса  организмов-трансформаторов.

Практически нет ни одного элемента, который не подвергался бы воздействию микроорганизмов

или их метаболитов.

Минеральная  часть  почвы  разрушается  под  воздействием  различных  неорганических  и

органических кислот, щелочей, ферментов и других соединений — продуктов жизнедеятельности

почвенных  микроорганизмов.  С  разложением  органических  остатков  в  почве  идут  процессы

гумификации.  В  этих  процессах  велика  роль  почвенной  биоты,  в  частности  микроорганизмов.

Гумус  накапливается  в  результате  длительного  и  разнообразного  взаимодействия  и

взаимовлияния  населяющих  почву  организмов  и  высших  растений.  Почвенное  плодородие,

основу которого составляют гумусовые вещества,  зависит от структуры и активности почвенной

микробиоты.

Почвенные  микроорганизмы  обладают  уникальной  способностью  фиксировать  газообразный,

атмосферный азот и переводить его в усвояемые для растений соединения. Азот, фиксируемый

почвенными  микроорганизмами,  называется  биологическим,  а  микроорганизмы,  связывающие

молекулярный азот, — азотфиксаторами, или диазотрофами. Способность почвенных микроорга-

низмов  усваивать  атмосферный  азот  используют  при  разработке  биопрепаратов  на  основе

активных  штаммов  микроорганизмов.  Если  первые  разработанные  биопрепараты,  например

нитрагин, изготавливали на основе симбиотических микроорганизмов (клубеньковых бактерий),

то  теперь  успешно  применяют  препараты  на  основе  несимбиотических  микроорганизмов

(Klebsiella, Rhizobium и др.).

Уникальные  функции  микроорганизмов  по  фиксации  атмосферного  азота  приобретают  особое

значение в связи с усилением антропогенного воздействия на агроэкосистемы и возможностью

использования биологических механизмов питания растений. Это позволяет в будущем перейти

от  современного  «химического»  земледелия  к  конструированию  агробиоценозов  на

биологической основе.

Микробная биомасса содержит различные вещества, необходимые высшим растениям. Особенно

богата  она  азотом.  Содержание  его  в  клетках  микроорганизмов  достигает  12%;  на  долю  Р2  О5

приходится 3 %, К20 - 2,2 %.

Разнообразен и биохимический состав микробной биомассы. В состав ее сухого вещества входят:

53 % белка, 16 — сахара, 18 — нуклеиновых кислот, 10 — жиров, 3 % ферментов, витаминов, рос-

товых веществ, антибиотиков и других соединений, необходимых растениям.

Микроорганизмы  в  течение  года  могут  синтезировать  на  1  га  пахотного  слоя  почвы  до  400  г

тиамина, 300 г пиридок- сина и 1 кг никотиновой кислоты (табл. 9.3), причем при обогащении по-

чвы Azotobacter количество витаминов в почве возрастает в 5 раз.

Экотоксикологические  функции  микроорганизмов.  Микроорганизмы  —  индикаторы

физиологического  состояния  растений  в  системе  почва—растение.  Способность  почвенных

микроорганизмов  чутко  реагировать  на  малейшие  изменения  окружающей  среды  и  высокая

ферментативная  активность  позволяют  использовать  их  для  индикации  состояния  экосистем  и

оценки деградации токсичных соединений в них. Эта особенность почвенных микроорганизмов

делает  их  незаменимыми  в  современных  экологических  исследованиях,  особенно  для  ранней

диагностики изменений, происходящих в экосистемах под воздействием токсичных веществ и их

микробной трансформации.

Из  множества  почвенно-экологических  факторов  —  физических,  химических,  агрохимических  и

биологических  —  последние  являются  наиболее  чувствительными  и  способными  наиболее

адекватно  характеризовать  физиологическое  состояние  растений  в  системе  почва—растение.

Количество  микробной  биомассы,  характеризующее  физиологическое  состояние  растений,

является  интегральным  показателем  системы  почва—растение  и  может  быть  использовано  в

различных экологических исследованиях (например, при нормировании антропогенных нагрузок,

определении устойчивости экосистем и т. д.).

Биоиндикация —  оценка  качества  среды  обитания  и её  отдельных  характеристик по  состоянию

биоты в природных условиях. Для учёта изменения среды под действием антропогенного фактора

составляются  списки  индикаторных  организмов —  биоиндикаторов.  Биоиндикаторы —  виды,

группы  видов  или  сообщества,  по  наличию,  степени  развития,  изменению  морфологических,

структурно-функциональных,  генетических  характеристик  которых  судят  о  качестве  воды  и

состоянии  экосистем.  В  качестве  биоиндикаторов  часто  выступают  лишайники,  в  водных

объектах — сообщества бактерио-, фито-, зоопланктона, зообентоса, перефитона.

Принципиальным преимуществом является возможность осуществления прямой количественной

оценки  вероятности  проявления  биологических  эффектов  в  исследуемой  среде,  вызванных

загрязнением.  Тесты  на  токсичность  определяют  токсичность  смеси  химикатов,  что  позволяет

автоматически учитывать возможный синергизм действия этих химикатов. Недостатки: Тесты, как

правило,  проводятся  в  контролируемых  лабораторных  условиях,  и,  поэтому  получаемые

результаты  иногда  трудно  сопоставимы  с  условиями,  имеющими  место  в  природе.  Тесты  на

токсичность не дают информации о том, каков качественный состав загрязнителей в исследуемой

пробе. Тесты на токсичность не отражают изменения, происходящие в популяциях организмов.

 

 


 

А также другие работы, которые могут Вас заинтересовать

25998. Философия и медицина 15.18 KB
  Чаадаев о России Петр Яковлевич [27. Высочайшим повелением Чаадаев Петр Яковлевич был объявлен сумасшедшим. Написанная Чаадаев Петр Яковлевич в ответ на обвинения в недостатке патриотизма Апология сумасшедшего 1837 где Чаадаев Петр Яковлевич говоря о России утверждал что мы призваны решить большую часть проблем социального порядка.227 при жизни Чаадаев Петр Яковлевич Напечатана не была.
25999. Философские традиции Древней Индии. Веды 30.37 KB
  Содержанием философии в Упанишадах становится обсуждение таких фундаментальных проблем как место и назначение человека в системе окружающего бытия природа внешнего мира и человека характер его жизни и психики границы и возможности его познавательных способностей нормы его поведения и т. Не удивительно поэтому что при таком отношении господствующей в Упанишадах религиозноидеалистической философии к оппозиционным ей учениям последние получили здесь крайне скупое освещение: чаще всего они представлены лишь в виде простого упоминания без...
26000. Буддизм: религия и философия 19.58 KB
  Основатель буддизма индийский принц Сиддхартха Гаутама получивший впоследствии имя Будды что значит пробуждённый просветлённый а также ШакьяМуни что значит мудрец из рода Шакьи. Вероучение и обрядность раннего Буддизма изложены в Трип Итаке €œтройной корзине€ своде произведений основанных на откровениях Будды. Душа распадается по учению Буддизма на отдельные элементы сканды но чтобы в новом рождении оказалась воплотившейся та же личность необходимо чтобы сканды соединились тем образом как они были соединены в прежнем...
26001. Особенности древнекитайской философии. Конфуцианство 34.09 KB
  Философия Бакунина Михаил Александрович [1830. В эти годы Бакунин Михаил Александрович последователь философии И. В Берлинском университете Бакунин Михаил Александрович слушал лекции К. В Цюрихе Бакунин Михаил Александрович познакомился с В.
26002. Натурфилософия Древней Греции. Сущность материализма 29.47 KB
  Жан Жак Руссо .В любом из произведений Руссо непрестанно звучат четыре лейтмотива: культ личности чувствительность культ природы и ощущение социальной несправедливости. Эти Руссо замечает что жизнь человека в этом лучшем из миров не соответствует его подлинной сущности что человек не таков каким он должен быть согласно своей истинной природе но и представляется не тем что он есть на самом деле люди не решаются показаться тем что они есть стало выгоднее притворяться не таким каков ты есть на самом деле. Чем больше накапливаем...
26003. СМО с бесконечной очередью для пуассоновских потоков. Граф, система уравнений, расчетные соотношения 23.44 KB
  СМО с бесконечной очередью для пуассоновских потоков. Из СМО с очередью конечной длины можно получить СМО с неограниченной очередью если устремить. Рассмотрим частный случай одноканальной системы с бесконечной очередью
26004. СМО с бесконечной очередью для произвольных потоков. Граф, система уравнений, расчетные соотношения 30.06 KB
  СМО с бесконечной очередью для произвольных потоков. Рассмотрим случай который можно интерпретировать либо как наличие немедленного обслуживающего прибора интенсивность обслуживания которого растет линейно с ростом числа ожидающих требований либо как систему в которой всегда найдется новый обслуживающий прибор доступный каждому вновь поступающему требованию. СМО типа М М ∞ с бесконечным числом обслуживающих приборов Переходя к равенству: Получаем: Можно выписать искомые решения для pk и N: Условие эргодичности в данном случае также...
26005. СМО с бесконечной очередью и частичной взаимопомощью для пуассоновских потоков. Граф, система уравнений, расчетные соотношения 60.64 KB
  СМО типа М М m Переходя к решению для pk в соответствии с равенством: Видим что это решение должно быть разбито на две части так как зависимость k от k также имеет две части. Соответственно при k≤m: Аналогично при k≥m: Объединяя результаты получим: Где: Теперь с помощью: Можно выписать решение для p0: И следовательно: Вероятность того что поступающее требование окажется в очереди задается равенством: Таким образом:.
26006. СМО с бесконечной очередью и частичной взаимопомощью для произвольных потоков. Граф, система уравнений, расчетные соотношения 35.06 KB
  Эта система в строгом смысле является саморегулируемой. Подходящей моделью для описания такой системы является процесс размножения и гибели при следующем выборе параметров: Система является эргодической.