28165

Корпускулярно-волновой дуализм. Гипотеза Луи де-Бройля. Опыты по дифракции микрочастиц и их интерпретация

Доклад

Физика

Гипотеза Луи деБройля. Такие волны получили название фазовых волн волн вещества или волн де Бройля. Так как частица и волна де Бройля являются различными аспектами одного и того же физического объекта то между ними должна существовать однозначная связь; релятивистски инвариантным соотношением между 4векторами характеризующими частицу и соответствующую ей волну де Бройля является формула 2 или ; . 3 Выражения 3...

Русский

2013-08-20

109 KB

8 чел.

65  Корпускулярно-волновой дуализм. Гипотеза Луи де-Бройля. Опыты по дифракции микрочастиц и их интерпретация

К началу XX века в оптике были известны как явления, подтверждающие наличие у электромагнитного излучения волновых свойств (интерференция, поляризация, дифракция и др.), так и явления, нашедшие объяснение с позиций корпускулярной теории (фотоэффект, эффект Комптона и др.). Для частиц вещества был обнаружен ряд эффектов, внешне сходных с оптическими явлениями, характерными для волн. Так, в 1921 году Рамзауэр при исследовании рассеяния электронов на атомах аргона обнаружил, что при уменьшении энергии электрона от нескольких десятков электрон-вольт эффективное сечение упругого рассеяния электронов на аргоне растет (рисунок 1). Но при энергии электрона ~16 эВ  эффективное сечение достигает максимума и при дальнейшем уменьшении энергии электрона уменьшается. При энергии электрона ~ 1 эВ становится близким к нулю, а затем начинает снова увеличиваться.

 

Таким образом, вблизи ~ 1 эВ электроны как бы не испытывают с атомами аргона столкновений и пролетают через газ без рассеяния. Такое же поведение характерно и для сечения рассеяния электронов на атомах других инертных газов, а также на молекулах (последнее обнаружено Таунсендом).

Французский ученый Луи де Бройль в 1924 году высказал идею о том, что частицы вещества обладают и корпускулярными, и волновыми свойствами.

При этом он предположил, что частице, свободно движущейся с постоянной скоростью , соответствует плоская монохроматическая волна

,                                             (1)

где  и  - ее частота и волновой вектор.

Волна (1) распространяется в направлении движения частицы (). Такие волны получили название фазовых волн, волн вещества или волн де Бройля.

Так как частица и волна де Бройля являются различными аспектами одного и того же физического объекта, то между ними должна существовать однозначная связь; релятивистски инвариантным соотношением между 4-векторами, характеризующими частицу и соответствующую ей волну де Бройля является формула

                                                     (2)

или

;              .                                                    (3)

Выражения (3) называются формулами де Бройля. Длина волны де Бройля определяется, таким образом, формулой

                                                     (4)

(здесь). Именно эта длина волны должна фигурировать в формулах при волновом описании эффекта Рамзауэра – Таунсенда и опытов Дэвиссона - Джермера1.

С учетом (3) формулу (1) можно записать в виде плоской волны

,                                              (5)

соответствующей частице, имеющей импульс  и энергию .

Волны де Бройля характеризуются фазовой и групповой скоростями. Фазовая скорость определяется из условия постоянства фазы волны (5)  и для релятивистской частицы равна

,                                                    (6)

то есть она всегда больше скорости света2. Групповая скорость волн де Бройля равна скорости движения частицы:

.                                                   (7)

Из (6) и (7) вытекает связь между фазовой и групповой скоростями волн де Бройля:

.                                                        (8)

Гипотеза де Бройля была подтверждена многочисленными экспериментами. В частности, селективное отражение электронов от поверхности металлов изучалось в 1927 году американскими физиками Дэвиссоном и Джермером, а также независимо от них английским физиком Дж. П. Томсоном (опыт Дэвиссона и Джермера).

Параллельный пучок моноэнергетических электронов из электронно-лучевой трубки  (рисунок 2) направляли на никелевую пластинку . Отраженные электроны улавливались коллектором , соединенным с гальванометром . Коллектор устанавливается под любым углом  относительно падающего пучка (но в одной плоскости с ним).

В результате опытов Дэвиссона–Джермера показано, что угловое распределение рассеянных электронов имеет такой же характер, как и распределение рентгеновских лучей, рассеянных кристаллом. При изучении дифракции рентгеновских лучей на кристаллах было установлено, что распределение дифракционных максимумов описывается формулой

,                                                          (9)

где  - постоянная кристаллической решетки,  - порядок дифракции,  - длина волны рентгеновского излучения.

Полученная в опыте зависимость интенсивности отраженного электронного пучка I от  (V – ускоряющий потенциал) изображена на рисунке 3 (для кристалла никеля,)., d=0,203 нм, .

Чередование максимумов и минимумов интенсивности отраженного электронного пучка свидетельствует о волновых свойствах электронов. Показано, что положение максимумов интерференции электронного пучка согласуется (при больших значениях n) c условием (9) в котором  - дебройлевская длина волны электрона.

Представление о том, что в поведении микрообъектов проявляются как корпускулярные, так и волновые свойства, закреплено в термине «корпускулярно-волновой дуализм» и лежит в основе квантовой теории, где он и получил естественное истолкование.

Борн предложил следующую физическую интерпретацию волн де Бройля: вероятность обнаружения частицы в некоторой точке пространства пропорциональна интенсивности соответствующей волны де Бройля, то есть квадрату амплитуды волнового поля в данной точке пространства. Таким образом, предложено вероятностно-статистическое толкование природы волн, связанных с микрочастицами: закономерность распределения микрочастиц в пространстве можно установить только для большого числа частиц; для одной частицы можно определить вероятность попадания в определенную область.

1 Для  электронов, ускоренных электрическим полем с разностью потенциалов В, длина волны де Бройля нм; при кВ =0,0122 нм. что по порядку величины совпадает с длиной волны рентгеновского излучения.

2 Это не противоречит теории относительности, так как фазовая скорость не характеризует скорости переноса энергии и массы частицы и не измеряется на опыте.

PAGE  3


σ

E

Рисунок 1 - Зависимость эффективного сечения рассеяния электронов на атомах аргона от энергии электронов

Т

Г

К

М

Рисунок 1 - Схема опыта Дэвиссона-Джермера

I

n=    2           3            4             5            6          7

        5                 10              15                20              25      V1/2

Рисунок 3 – Зависимость интенсивности отраженного электронного пучка I от  EMBED Equation.3  


 

А также другие работы, которые могут Вас заинтересовать

22556. Расчет балок переменного сечения 76.5 KB
  Так как изгибающие моменты обычно меняются по длине балки то подбирая ее сечение по наибольшему изгибающему моменту мы получаем излишний запас материала во всех сечениях балки кроме того которому соответствует . Для экономии материала а также для увеличения в нужных случаях гибкости балок применяют балки равного сопротивления. Под этим названием подразумевают балки у которых во всех сечениях наибольшее нормальное напряжение одинаково и должно быть равно допускаемому. Условие определяющее форму такой балки имеет вид и Здесь Мх и...
22557. Расчет балки на упругом основании 78.5 KB
  Расчет балки на упругом основании.1 на упругое основание оказывающее в каждой точке на балку реакцию пропорциональную у прогибу балки в этой точке. Расчетная схема балки на упругом основании. Будем считать что основание оказывает реакцию при прогибах балки как вниз так и вверх.
22558. Энергетические методы расчета деформаций 75.5 KB
  Он основан на применении закона сохранения энергии. При статическом растяжении или сжатии упругого стержня происходит превращение потенциальной энергии из одного вида в другой; часть потенциальной энергии действующего на стержень груза полностью переходит в потенциальную энергию деформации стержня. Это явление имеет место при любом виде деформации всякой упругой конструкции при статической нагрузке; такую конструкцию можно рассматривать как своеобразную машину преобразующую один вид потенциальной энергии в другой. При этих условиях...
22559. Теорема Кастильяно 133 KB
  Будем решать эту задачу в несколько приемов; сначала рассмотрим более простой случай Рис. Мы представим себе что для перехода к смежному деформированному состоянию к силе сделана бесконечно малая добавка Рис. Предположим что мы сначала нагрузили нашу балку грузом ; балка очень немного прогнется Рис. Рис.
22560. Теоремы о взаимности работ и Максвелла — Мора 150 KB
  Если к балке нагруженной силой приложить затем статически силу в сечении 2 то к прогибу точки приложения силы от этой же силы прибавится Рис.1 прогиб от силы равный ; первый значок у буквы у указывает точку для которой вычисляется прогиб; второй обозначает силу вызывающую этот прогиб. Расчетная схема к теореме о взаимности работ Полная работа внешних сил составится из трех частей: работы силы на вызванном ею прогибе т. работы силы на вызванном ею прогибе ее точки приложения т.
22561. Часова організація памяті 26.5 KB
  Часова організація памяті Безпосередній відбиток забезпечує утриманнялише протягом 50500 мс достатньо повного і детального образу картини зовнішнього світу що сприймаеться органами чуття. Цей вид памяті має різні параметри у кожної людини змінюється протягом життя індивіда і залежить від функціонального стану організму. Ця память відрізняеться від попердньої тим що дозволяє відтворювати будь яку частину представленого матеріалу і тим самим деякий час утримувати в памяті визначену кількість інформації. Не вся інформація з системи...
22563. Механізми, що лежать в основі формування довготривалої памяті 25 KB
  Механізми що лежать в основі формування довготривалої памяті Цей вид памяті не може базуватись лише на циркуляції імпульсів чи змінах електрофізичних характеристик окремих нейронів. Разом з тим велика кількість інформації при цьому зберігається в довготривалій памяті – незмінню.Механізм памяті такоє пояснюють на основі складних морфологічних чи біохімічних змін синапсів. Молекулярна теорія памяті в основі якої лежить уявлення про те що виникаючий під дією зовнішнього подразника нервовий імпульс активує синтез РНК в нейроні.
22564. Визначення та класифікація емоцій 24 KB
  Визначення та класифікація емоцій Емоції рефлекторна адаптаційна психофізіологічна реакція яка повязана з проявом субєктивного ставлення до значущої ситуації і забезпечує організацію доцільної поведінки. Емоції поділяють на вищі та нижчі. Нижчі емоції найбільш елементарні повязані з органічними потребами тварин і людей поділяються на 2 види : 1 гомеостатичні проявляються в вигляді неспокою пошуковорухової активності спраги голоду і ін. Вищі емоції виникаютьлишу у людини в звязку з задоволенням соціальних потреб інтелектуальних...