28166

ПОНЯТИЕ КВАНТОВОГО СОСТОЯНИЯ ВОЛНОВАЯ ФУНКЦИЯ. СООТНОШЕНИЕ НЕОПРЕДЕЛЕННОСТИ

Доклад

Физика

Так функцией состояния свободной частицы является плоская монохроматическая волна де Бройля . 1 Для частицы подверженной внешнему воздействию например для электрона в поле ядра это волновое поле может иметь весьма сложный вид. Волновая функция зависит от параметров микрочастицы и от тех физических условий в которых частица находится. Согласно статистической интерпретации волн де Бройля вероятность локализации частицы определяется интенсивностью волны де Бройля так что...

Русский

2013-08-20

100.5 KB

5 чел.

66  ПОНЯТИЕ КВАНТОВОГО СОСТОЯНИЯ ВОЛНОВАЯ ФУНКЦИЯ. СООТНОШЕНИЕ НЕОПРЕДЕЛЕННОСТИ.

В квантовой механике для описания состояния нужно применять новые (по отношению к классической физике) специфические средства. Важнейшим из них является понятие о волновой функции, или функции состояния (-функции).

Функция состояния есть математический образ того волнового поля, которое следует связывать с каждой частицей. Так, функцией состояния свободной частицы является плоская монохроматическая волна де Бройля

.                                                            (1)

Для частицы, подверженной внешнему воздействию (например, для электрона в поле ядра), это волновое поле может иметь весьма сложный вид. Волновая функция зависит от параметров микрочастицы и от тех физических условий, в которых частица находится. Зная волновую функцию, можно предсказать, какие значения всех измеряемых величин могут наблюдаться на опыте и с какой вероятностью. Функция состояния несет всю информацию о движении и квантовых свойствах частиц.

Согласно статистической интерпретации волн де Бройля, вероятность локализации частицы определяется интенсивностью волны де Бройля, так что вероятность обнаружения частицы в малом объеме  в окрестности точки  в момент времени  равна

.                                  (2)

Для плоской волны де Бройля (1)

,

то есть равновероятно обнаружить свободную частицу в любом месте пространства.

Величину

                                                                        (3)

называют плотностью вероятности. Вероятность найти частицу в момент времени  в конечном объеме , согласно теореме сложения вероятностей, равна

.                                                    (4)

Если в (4) произвести интегрирование в бесконечных пределах, то будет получена полная вероятность обнаружения частицы в момент времени  где-нибудь в пространстве. Это – вероятность достоверного события, поэтому

.                                                          (5)

Условие (5) называется условием нормировки, а -функция, удовлетворяющую ему, – нормированной.

Основной задачей квантовой механики является отыскание функции состояний и связанных с ними физических следствий в самых разнообразных условиях. Уравнение, решением которого является функция состояния, является основным уравнением квантовой механики.

Такое уравнение должно удовлетворять следующим требованиям:

  1.  Оно должно быть универсальным в том смысле, что состояние частицы в любых физических условиях должно описываться -функцией, являющейся решением этого уравнения.
  2.  В общем случае это уравнение должно представлять собой дифференциальное уравнение в частных производных по координатам и времени, так как оно должно описывать состояния движения частиц во времени и в пространстве.
  3.  В нерелятивистском приближении оно не должно противоречить уравнению

,

выражающему полную энергию  частицы массы  через ее кинетическую () и потенциальную () энергию.

  1.  Уравнение должно быть линейным по . Это требование означает, что если , где n=1, 2, 3, …, представляют собой различные решения уравнения с данной потенциальной энергией, то любая линейная комбинация этих решений

                                                       (6)

также является его решением.

Уравнение, удовлетворяющее перечисленным требованиям в нерелятивистском приближении, было постулировано в 1926 году австрийским физиком Э. Шрёдингером:

.                                                     (7)

Здесь  - оператор Лапласа,  - потенциальная энергия. Уравнение (7) называют общим или временным уравнением Шрёдингера. Оно является основным уравнением квантовой механики и выражает принцип причинности в квантовой механике, так как описывает изменение -функции с течением времени. Отметим, что справедливость уравнениz Шрёдингера доказывается экспериментально.

Волновую функцию частицы, движущейся в потенциальном поле, можно представить волновым пакетом. Если длина волнового пакета частицы вдоль оси  равна , то волновые числа , необходимые для его образования, должны занимать интервал , удовлетворяющий соотношению

или, после умножения на ,

.                                                                      (8)

Справедливы и аналогичные соотношения

                                                                    (9)

Соотношения (8), (9) называют соотношениями неопределенностей Гейзенберга (или принципом неопределенности). Согласно этому положению, любая физическая система не может находиться в состояниях, в которых координаты ее центра инерции и импульс одновременно принимают вполне определенные, точные значения.

Соотношения, аналогичные записанным, должны выполняться для любой пары так называемых канонически сопряженных величин. Неопределенность в измерениях связана не с несовершенством экспериментальной техники, а с волновыми свойствами частиц.

Несколько иной смысл имеет соотношение неопределенностей для энергии  и времени :

.                                                                   (10)

Из соотношения (10) следует, что энергию системы в стационарном состоянии можно измерить с точностью, не превышающей , где - длительность процесса измерения.

Из соотношений неопределенностей следует вывод о том, что в квантовой механике теряет смысл деление полной энергии  частицы на кинетическую и потенциальную. Действительно, одна из них зависит от импульсов, а другая – от координат. Эти же переменные не могут одновременно иметь определенные значения. Энергия  должна определяться и измеряться лишь как полная энергия, без деления на кинетическую и потенциальную.

PAGE  1


 

А также другие работы, которые могут Вас заинтересовать

2182. Отношенческо-коммуникативный компонент воспитательной системы школы 195.24 KB
  Воспитатель личностно значим для воспитанников. Воспитатель социально положительно ориентирован. Толерантность сторон; Компетентность воспитателя. Учет базовых ценностей взаимодействующих субъектов, социума. Взаимодействие не должно приносить вреда другим личностям, обществу; Воспитание на личном примере.
2183. Энергетические системы 806.76 KB
  Общие сведения об энергетических системах. Режимы и параметры системы и сети. Трансформатор с расщепленной обмоткой низшего напряжения. Совместный расчет режима сетей нескольких номинальных напряжений. Расчеты режима линий с двусторонним питанием при различающихся напряжениях источников питания (по концам).
2184. Правила дорожнього руху. Дороги в мікрорайоні школи, громадський транспорт 1.06 MB
  Мета уроку: нагадати учням правила безпечного переходу дороги, знайомити з правилами безпечної поведінки на зупинках та правилами посадки в громадський транспорт. Надати можливість відпрацьовувати життєві навички аналізу дорожньої ситуації, уміння приймати відповідальне рішення щодо переходу дороги.
2185. Шоу-вікторина знавців правил дорожнього руху Мій друг – дорожній рух 467.71 KB
  Учні поділені на групи. кожна команда готує свою назву, девіз та емблему. Зал оформлений таблицями з ПДР. малюнками за темою та стіннівками. Звучить фонограма автомобільних сигналів.
2186. Весела подорож до країни Світлофорії 845.74 KB
  Весела подорож до країни Світлофорії (для учнів молодшого шкільного віку).
2187. КВК – Правила дорожнього руху 2.86 MB
  Живи за правилами. Я – не порушую правил дорожнього руху. Правила дорожні знаєм, з автоінспектором вивчаєм. Різних знаків є багато – Обереги, застороги. Всім потрібно добре знати Мудру азбуку дороги!
2188. Метрология, стандартизация и сертификация 2.81 MB
  Основные понятия и определения. Погрешности измерений. Измерительные генераторы. Условие неподвижного изображения периодических сигналов. Стробоскопический осциллограф. Измеряемые параметры токов и напряжений. Измерение спектральных характеристик. Измерение компонентов цепей с сосредоточенными постоянными.
2189. Рак шейки матки 203.5 KB
  Применение чисто хирургического метода в лечении данного заболевания ограничено лишь ранними стадиями болезни, что редко встречается в клинической практике. Обычно, встречается рак на стадии глубокой инвазии опухоли в строму, что делает хирургический метод неэффективным.
2190. Системи обробки сигналів та зображень 978.52 KB
  Цифрові методи обробки сигналів. Означення та класифікація сигналів. Спектри неперервних сигналів та їх властивості. Спектри типових дискретизованих необмежених у часі сигналів. Загальна характеристика методів цифрового згладжування даних.