28166

ПОНЯТИЕ КВАНТОВОГО СОСТОЯНИЯ ВОЛНОВАЯ ФУНКЦИЯ. СООТНОШЕНИЕ НЕОПРЕДЕЛЕННОСТИ

Доклад

Физика

Так функцией состояния свободной частицы является плоская монохроматическая волна де Бройля . 1 Для частицы подверженной внешнему воздействию например для электрона в поле ядра это волновое поле может иметь весьма сложный вид. Волновая функция зависит от параметров микрочастицы и от тех физических условий в которых частица находится. Согласно статистической интерпретации волн де Бройля вероятность локализации частицы определяется интенсивностью волны де Бройля так что...

Русский

2013-08-20

100.5 KB

5 чел.

66  ПОНЯТИЕ КВАНТОВОГО СОСТОЯНИЯ ВОЛНОВАЯ ФУНКЦИЯ. СООТНОШЕНИЕ НЕОПРЕДЕЛЕННОСТИ.

В квантовой механике для описания состояния нужно применять новые (по отношению к классической физике) специфические средства. Важнейшим из них является понятие о волновой функции, или функции состояния (-функции).

Функция состояния есть математический образ того волнового поля, которое следует связывать с каждой частицей. Так, функцией состояния свободной частицы является плоская монохроматическая волна де Бройля

.                                                            (1)

Для частицы, подверженной внешнему воздействию (например, для электрона в поле ядра), это волновое поле может иметь весьма сложный вид. Волновая функция зависит от параметров микрочастицы и от тех физических условий, в которых частица находится. Зная волновую функцию, можно предсказать, какие значения всех измеряемых величин могут наблюдаться на опыте и с какой вероятностью. Функция состояния несет всю информацию о движении и квантовых свойствах частиц.

Согласно статистической интерпретации волн де Бройля, вероятность локализации частицы определяется интенсивностью волны де Бройля, так что вероятность обнаружения частицы в малом объеме  в окрестности точки  в момент времени  равна

.                                  (2)

Для плоской волны де Бройля (1)

,

то есть равновероятно обнаружить свободную частицу в любом месте пространства.

Величину

                                                                        (3)

называют плотностью вероятности. Вероятность найти частицу в момент времени  в конечном объеме , согласно теореме сложения вероятностей, равна

.                                                    (4)

Если в (4) произвести интегрирование в бесконечных пределах, то будет получена полная вероятность обнаружения частицы в момент времени  где-нибудь в пространстве. Это – вероятность достоверного события, поэтому

.                                                          (5)

Условие (5) называется условием нормировки, а -функция, удовлетворяющую ему, – нормированной.

Основной задачей квантовой механики является отыскание функции состояний и связанных с ними физических следствий в самых разнообразных условиях. Уравнение, решением которого является функция состояния, является основным уравнением квантовой механики.

Такое уравнение должно удовлетворять следующим требованиям:

  1.  Оно должно быть универсальным в том смысле, что состояние частицы в любых физических условиях должно описываться -функцией, являющейся решением этого уравнения.
  2.  В общем случае это уравнение должно представлять собой дифференциальное уравнение в частных производных по координатам и времени, так как оно должно описывать состояния движения частиц во времени и в пространстве.
  3.  В нерелятивистском приближении оно не должно противоречить уравнению

,

выражающему полную энергию  частицы массы  через ее кинетическую () и потенциальную () энергию.

  1.  Уравнение должно быть линейным по . Это требование означает, что если , где n=1, 2, 3, …, представляют собой различные решения уравнения с данной потенциальной энергией, то любая линейная комбинация этих решений

                                                       (6)

также является его решением.

Уравнение, удовлетворяющее перечисленным требованиям в нерелятивистском приближении, было постулировано в 1926 году австрийским физиком Э. Шрёдингером:

.                                                     (7)

Здесь  - оператор Лапласа,  - потенциальная энергия. Уравнение (7) называют общим или временным уравнением Шрёдингера. Оно является основным уравнением квантовой механики и выражает принцип причинности в квантовой механике, так как описывает изменение -функции с течением времени. Отметим, что справедливость уравнениz Шрёдингера доказывается экспериментально.

Волновую функцию частицы, движущейся в потенциальном поле, можно представить волновым пакетом. Если длина волнового пакета частицы вдоль оси  равна , то волновые числа , необходимые для его образования, должны занимать интервал , удовлетворяющий соотношению

или, после умножения на ,

.                                                                      (8)

Справедливы и аналогичные соотношения

                                                                    (9)

Соотношения (8), (9) называют соотношениями неопределенностей Гейзенберга (или принципом неопределенности). Согласно этому положению, любая физическая система не может находиться в состояниях, в которых координаты ее центра инерции и импульс одновременно принимают вполне определенные, точные значения.

Соотношения, аналогичные записанным, должны выполняться для любой пары так называемых канонически сопряженных величин. Неопределенность в измерениях связана не с несовершенством экспериментальной техники, а с волновыми свойствами частиц.

Несколько иной смысл имеет соотношение неопределенностей для энергии  и времени :

.                                                                   (10)

Из соотношения (10) следует, что энергию системы в стационарном состоянии можно измерить с точностью, не превышающей , где - длительность процесса измерения.

Из соотношений неопределенностей следует вывод о том, что в квантовой механике теряет смысл деление полной энергии  частицы на кинетическую и потенциальную. Действительно, одна из них зависит от импульсов, а другая – от координат. Эти же переменные не могут одновременно иметь определенные значения. Энергия  должна определяться и измеряться лишь как полная энергия, без деления на кинетическую и потенциальную.

PAGE  1


 

А также другие работы, которые могут Вас заинтересовать

69286. Керування документами та представленнями 47.5 KB
  Оскільки архітектура документ/представлення є наріжним каменем будь-якого документ - орієнтованого застосування (як вже було сказано, діалогові застосування потрійні трохи інакше, чим додатки архітектури документ/представлення), класи MFC повинні володіти здатністю створювати...
69287. Клас CView 50 KB
  Для кожного класу, похідного від CDocument, що потребує надання користувачеві візуального інтерфейсу, необхідний клас, похідний від CView, який і забезпечує цей інтерфейс. Клас, похідний від CView, забезпечує як візуальне представлення даних документа, так і взаємодію з користувачем у вікні представлення.
69288. Життєвий цикл шаблону документа 47 KB
  Як можна здогадатися, CSingleDocTemplate — достатньо легковагий (lightweight) клас (під цим автор має на увазі, що об’єкт даного класу займає в пам’яті дуже мало місця). Крім того, розробник може не піклуватися про пошук і зберігання класів шаблону документа, навіть якщо їх ціла дюжина.
69289. Базові відомості про дискові пристрої 46.5 KB
  Мінімальна кількість доріжок на поверхні пластини в сучасних дисках 700 максимальна більше 20 000. Кожну доріжку під час низькорівневого форматування розбивають на сектори sectors обсяг даних сектора для більшості архітектур становить 512 байт він обов’язково має дорівнювати степеню...
69290. Завдання підсистеми введення-виведення 41.5 KB
  У даному розділі розглядатимуться можливості ОС щодо керування пристроями введення-виведення, а саме: загальна організація підсистеми введення-виведення, різні способи виконання зазначених операцій, деякі особливості роботи цієї підсистеми ядра, засоби організації інтерфейсу...
69291. Завдання підсистеми введення-виведення ядра 77 KB
  Планування введення-виведення звичайно реалізоване як середньотермінове планування. Як відомо, з кожним пристроєм пов’язують чергу очікування, під час виконання блокувального виклику (такого як read() або fcntl()) потік поміщають у чергу для відповідного пристрою...
69292. Організація термінального введення-виведення 52 KB
  Є спеціальні символи керуючі коди і послідовності символів які не відображаються а керують виведенням на екран термінала. Передаючи такі послідовності термінала можна переміщати курсор у довільну позицію екрана керувати яскравістю відображення символів для деяких...
69293. Командний інтерфейс користувача 33 KB
  Командний інтерпретатор запускають щоразу, коли користувач реєструється у системі із термінала, при цьому стандартним вхідним і вихідним пристроєм для інтерпретатора і запущених за його допомогою програм є цей термінал.
69294. Загальні принципи мережної підтримки 35 KB
  Під мережею розуміють набір комп’ютерів або апаратних пристроїв вузлів nodes пов’язані між собою каналами зв’язку які можуть передавати інформацію один одному. Рівні мережної архітектури і мережні сервіси Функції забезпечення зв’язку між вузлами є досить складними.