28170

Многоэлектронные атомы. Электронные оболочки атома и их заполнение. Физическое объяснение периодического закона. Рентгеновские спектры атомов

Доклад

Физика

Электронные оболочки атома и их заполнение. Такая одноэлектронная собственная функция атома называется атомной спинорбиталью АО. При рассмотрении многоэлектронного сложного атома можно воспользоваться приближением центрального поля. Однако в сложных атомах энергия электронов зависит как от главного квантового числа так и от орбитального квантового числа то есть происходит снятие вырождения по .

Русский

2013-08-20

186.5 KB

16 чел.

70  Многоэлектронные атомы. Электронные оболочки атома и их заполнение. Физическое объяснение периодического закона. Рентгеновские спектры атомов

В квантовой механике состояние электрона в поле ядра характеризуется четырьмя квантовыми числами: главным ( 1, 2, 3, …), орбитальным ( 0, 1, 2, …, ), магнитным (0,) и спиновым (). Такая одноэлектронная собственная функция атома   называется атомной спин-орбиталью (АО).

Совокупность АО (квантовых состояний), соответствующих определенному значению квантового числа , образует электронный слой, обозначаемый буквой или цифрой:

Главное квантовое число,

1

2

3

4

5

Обозначение слоя

K

L

M

N

O

Совокупность АО с определенными значениями квантовых чисел n и  формирует так называемую электронную оболочку, обозначаемую следующим образом:

Орбитальное квантовое число,

0

1

2

3

4

Обозначение оболочки

Число  состояний, формирующих - ю электронную оболочку, определяется по формуле . Число квантовых состояний , формирующих n-ый электронный слой, определяется по формуле .

При заданном значении  водородоподобному атому соответствует определенная энергия Еn (-ый энергетический уровень). Данное значение энергии относится к  квантовых состояний. Энергетический уровень Еn называется вырожденным, а  является кратностью вырождения  -го уровня.

При рассмотрении многоэлектронного (сложного) атома можно воспользоваться приближением центрального поля. Тогда возможно описание состояний каждого электрона в атоме с помощью квантовых чисел . Однако в сложных атомах энергия электронов зависит как от главного квантового числа , так и от орбитального квантового числа , то есть происходит снятие вырождения по . Снятие вырождения по  в сложных атомах является следствием взаимодействия между электронами атома.

Основными принципами, лежащими в основе порядка заполнения АО сложного атома электронами, являются:

  1.  В каждом квантовом состоянии не может быть более одного электрона (принцип Паули);
  2.  При дополнении электронной оболочки каждым последующим электроном получаемая при этом атомная система должна обладать минимальной энергией.

Правило Клечковского гласит: заполнение оболочек электронами происходит в порядке возрастания величины , причем состояния с одинаковым значением этой суммы заполняются, как правило, в порядке возрастания .

Пользуясь правилом Клечковского, можно составить ряд возможных состояний в порядке возрастания их энергии следующим образом:

1

2

2

3

3

4

3

4

5

Каждая электронная оболочка содержит  АО. Порядок заполнения АО, формирующих данную оболочку, определяется эмпирическим правило Гунда: порядок заполнения состояний данной оболочки электронами таков, что их суммарный спин имеет максимальное из возможных значение.

Электронная конфигурация сложного атома – это запись, указывающая количество электронов на каждой электронной оболочке атома в порядке возрастания их энергии. Например, электронная конфигурация атома натрия () в нормальном состоянии имеет вид . Электроны полностью заполненных внутренних оболочек ( - для ) совместно с ядром образуют остов, в поле которого движется внешний () электрон. Электроны внешних оболочек называются валентными или оптическими, поскольку именно их состояниями определяются и химические свойства, и структура оптических спектров атомов.

Состояние атома, характеризующееся минимальной энергией, называется основным. При поглощении энергии извне (например, энергии излучения) атом переходит в состояние с большей энергией (в возбужденное состояние). Это означает, что один или несколько оптических электронов переходят в более высокоэнергетическое состояние.

Рентгеновский спектр испускания сложного атома (рисунок 1) представляет собой совокупность нескольких узких линий , , … на фоне непрерывного спектра, ограниченного со стороны коротких длин волн величиной . Совокупность острых максимумов интенсивности, положение которых зависит только от природы вещества анода, называется характеристическим рентгеновским излучением. Характер непрерывного спектра не зависит от вещества анода, а зависит только от кинетической энергии бомбардирующих его электронов. Непрерывный рентгеновский спектр излучается самими электронами при их торможении веществом и называется тормозным спектром.

Граница сплошного рентгеновского спектра  (рисунок 1) связана с минимальной кинетической энергии электронов, при торможении которых вся кинетическая энергия электрона переходит в энергию кванта, т.е.  

Каждая линия характеристического рентгеновского спектра возникает в результате перехода атома из одного энергетического состояния в другое, а частота излучения определяется правилом частот Бора:

.                                                           (1)

Рентгеновскому излучению соответствуют короткие длины волн (10-12 - 10-9) м. Следовательно, квантовые переходы совершаются внутренними электронами атома.

Электрон, падающий на материал анода, выбивает электрон с одной из внутренних оболочек атома, в результате чего в ней образуется вакантное квантовое состояние. Электроны с более удаленных от ядра оболочек, обладающих более высокой энергией, могут перейти в освободившееся состояние. В результате этого перехода испускается квант излучения, соответствующий рентгеновской области.

Энергию электрона, расположенного в одной из внутренних оболочек атома, можно представить в виде

,             (<<  - постоянная экранирования.)       (2)

Рентгеновский терм, как следует из (2), может быть представлен следующим образом:

.                                              (3)

Из (3) следует соотношение, называемое законом Мозли

:                                                (4)

корни квадратные из рентгеновских термов линейно зависят от порядкового номера элемента .

Если электрон выбит из -оболочки (), то в рентгеновском спектре испускания наблюдается -серия, из -оболочки - -серия и т.д. (рисунок 2).

Линии испускания в рентгеновских спектрах возникают в результате переходов между рентгеновскими уровнями с учетом обычных правил отбора:

,   , .

В соответствии с этими правилами, в -серии возникают линии  и  (при переходах между - и -термами), линии  и  (при переходах между - и -термами) и т.д. При возбуждении наиболее глубоко лежащего -слоя возникает не только -серия, но и весь рентгеновский спектр.

PAGE  1


0                
1      2                                   

I

исунок 1 - Типичная кривая распределения интенсивности в рентгеновском спектре испускания

2

1

2

1

1

2

     K

     L

      M

     N

Электр слои

L-серия

M-серия

12S1/2

22S1/2

22P1/2

22P3/2

32S1/2

32P1/2

32P3/2

32D3/2

32D5/2

42S1/2

42P1/2

42P3/2

42D3/2

42D5/2

42F5/2

42F7/2

Рисунок 2- Формирование рентгеновских характеристических спектров испускания (без соблюдения масштаба)


 

А также другие работы, которые могут Вас заинтересовать

43297. Расчет усилителя звуковой частоты мощностью 30 мВ 510 KB
  Широкое распространение получили операционные усилители на основе которых можно сконструировать отдельные каскады и структурные блоки усилителя. Техническое задание Выходная мощность Pвых 7 Вт Сопротивление нагрузки Rн 4 Ом Входное напряжение Uвх 35мВ...
43298. Проектирование усилителя звуковой частоты на основе интегральных микросхемах 605.5 KB
  Схема усилителя в среде Micro Cp15 Построение АЧХ усилителя мощности звуковой частоты. Широкое распространение получили операционные усилители на основе которых можно сконструировать отдельные каскады и структурные блоки усилителя. Техническое задание Выходная мощность Pвых 7 Вт Сопротивление нагрузки Rн...
43299. Електричні станції і підстанції систем електропостачання 22.49 MB
  Для виконання даного проекту студенту необхідно виконати ряд завдань: розрахувати потужності силових трансформаторів вибрати схеми електричних з’єднань на вищих напругах розрахувати та вибрати комутаційні апарати та струмоведучі частини представити графічну частину. Вибір номінальної потужності силових трансформаторів ТЕЦ підстанції. Розробка схеми і вибір трансформаторів власних потреб станції підстанції.1–Терміни виконання проекту та критерії оцінювання знань за результатами захисту проекту № модуля Курсове проектування Виконання...
43300. Реверсирование двигателя 761 KB
  Поэтому требуется регулировать напряжение на обмотке возбуждения двигателя. Таким образом необходимо построить систему управления которая содержит два канала управления: первый – по цепи якоря второй по цепи возбуждения двигателя. двигателя номинальному значению.
43301. Создание функциональной схемы микропрограммного управляющего автомата 1.09 MB
  Построение графа автомата и структурной таблицы переходов и Выходов 12 7.1 Построение графа автомата и структурной таблицы переходов и выходов 22 22 8. Получение логических выражений для функций возбуждения RSтриггеров 28 9 Построение функциональной схемы управляющего микропрограммного автомата 30 10 Заключение 31 Список использованных сокращений 32 Библиографический список 33 Приложение А 34 Приложение Б 35 Приложение В 36 Приложение Г 37 Приложение Д 38 Приложение Е 39 УДК 681. Синтез микропрограммного управляющего автомата.
43302. Разработка технологического процесса изготовления детали Шток 1.18 MB
  Шток является самой ответственной частью вентиля, т.к. его поверхности 2 и 6 выполнены с высокой точностью и отполированы: коническая поверхность 2 плотно прилегает к корпусу вентиля и обеспечивает герметичность; цилиндрическая поверхность 6 соприкасается с рядом уплотнительных колец и также обеспечивает герметичность. Помимо всего вышеперечисленного поверхности 2 и 6, а также поверхность 9 подвергаются износу трением при эксплуатации: поверхность 2 о корпус вентиля, поверхность 6 об уплотнительные кольца, поверхность 9 об соединительное кольцо.
43303. Разработка технологического процесса изготовления детали «Шестерня привода топливного насоса ведомая» 3.15 MB
  Проектирование операции связано с разработкой их структуры, с составлением схем наладок, расчетом настроенных размеров и ожидаемой точности обработки, с назначением режимов обработки, определением нормы времени и сопоставлением ее с тактом работы (в поточном производстве). При расчетах точности и проверки производительности может возникнуть необходимость в некоторых изменениях маршрутной технологии, выбора оборудования, содержания операции или условий ее выполнения.
43304. Розрахунковий підйом та розрахунок руху поїзда 822 KB
  Цього можна досягти шляхом раціонального управління рухом поїзда яке залежить від вибраних режимів роботи локомотива тяга вибіг гальмування.4 Порядок розрахунку Розрахунок параметрів кривих VS і tS виконуються в такій послідовності: заносимо в таблицю “Результати розрахунку швидкостей та часу руху поїзда без зупинок†номер елемента його довжину та крутість; заносимо в цю ж таблицю початкове значення швидкості Vп км год Vп ≥ 1; вибирається режим роботи локомотива тяга вибіг гальмування; із графіка питомих рівнодійних...