28173

Модель атома Бора. Квантование круговых орбит и их характеристики. Правила квантования Бора-Зоммерфельда

Доклад

Физика

В соответствии с моделью Резерфорда для строения атома Бор рассматривал движение электрона относительно покоящегося ядра по круговой орбите. Согласно Бору стационарными являются лишь те орбиты при движении по которым момент импульса электрона равен целому числу приведенных постоянных Планка удовлетворяет условию квантования круговых орбит то есть для й орбиты можно записать: 1 где и соответственно масса линейная скорость движения электрона и радиус его й орбиты; =...

Русский

2013-08-20

157.5 KB

38 чел.

63  Модель атома Бора. Квантование круговых орбит и их характеристики. Правила квантования Бора-Зоммерфельда

Нильс Бор создал теорию строения водородоподобной атомной системы и модель испускания ею электромагнитного излучения, основываясь на сформулированных им квантовых постулатах.

В соответствии с моделью Резерфорда для строения атома Бор рассматривал движение электрона относительно покоящегося ядра по круговой орбите. Согласно Бору, стационарными являются лишь те орбиты, при движении по которым момент импульса электрона равен целому числу приведенных постоянных Планка (удовлетворяет условию квантования круговых орбит), то есть для -й орбиты можно записать:

,                                                             (1)

где ,  и  - соответственно масса, линейная скорость движения электрона и радиус его  - й орбиты;  = 1, 2, 3,…

Нетрудно найти полную энергию  электрона на -й орбите:

,                                                                (2)

где

                                                                 (3)

- кинетическая энергия электрона на -й орбите,

                                                               (4)

- потенциальная энергия кулоновского взаимодействия электрона с ядром. Здесь  в системе СГС,  в системе СИ.

Второй закон Ньютона для электрона, движущегося на -й круговой орбите, имеет вид:

.                                                                 (5)

Решая совместно (1) и (5), получим выражение для радиуса орбиты электрона:

.                                                                 (6)

Радиус первой орбиты (=1) в атоме водорода (=1) равен  м и называется первым боровским радиусом.

Из (1) с учетом (6) для скорости электрона  получим

.                                                                  (7)

Воспользовавшись формулами (2) (4), в которых  и  определяются выражениями (6) и (7), для энергии -го стационарного состояния  найдем:

.                                                       (8)

Величина , принимающая целочисленные значения, называется квантовым числом, а (8) представляет собой правило квантования энергии электрона.

Пользуясь правилом частот Бора

и выражением (8), найдем волновое число спектральной линии, соответствующей квантовому переходу из стационарного состояния с энергией  в стационарное состояние с энергией :

.                                               (9)

Полученное в рамках теории Бора выражение (9) для атома водорода совпадает с эмпирической обобщенной формулой Бальмера

,                                                      (10)

что свидетельствует о справедливости теории Бора. Сравнивая (9) и (10), находим:

(см-1).

Соответствующая схема энергетических уровней и переходов между ними для водородоподобной атомной системы, построенная на основе анализа формул (8) и (9), приведена на рисунке 1.

Стационарное состояние с наименьшей энергией () называется основным, или нормальным, все остальные (, 3,…) – возбужденными. При  имеем  = 0 (формула 8). При <0 электрон связан с ядром и спектр его энергий дискретен (энергия квантована); при > 0 электрон свободен и его энергия имеет непрерывный спектр значений. Переход электрона с основного энергетического уровня на более высокоэнергетический уровень дискретного спектра есть возбуждение атома. В результате перехода электрона с одного из уровней дискретного спектра в область непрерывного спектра энергий атом превращается в несвязанную систему, то есть происходит его ионизация. Минимальная энергия, необходимая для ионизации атома из -го состояния, соответствует переходу электрона с -го уровня на уровень  и называется энергией ионизации .

Пользуясь схемой, приведенной на рисунке 1, легко проиллюстрировать сериальные закономерности в спектрах водородоподобных систем. Так, для атома водорода в серию Лаймана должны быть включены спектральные линии, соответствующие переходам из любых возбужденных состояний в основное состояние, а в серию Бальмера – из возбужденных состояний с энергиями > в первое возбужденное состояние, энергия которого равна .

При >>1 имеет место тесная связь между результатами теории Бора и соотношениями классической физики (принцип соответствия). Действительно, в этом случае частоты излучения кратны частоте обращения электрона вокруг ядра.

Принципы квантования, заложенные Бором, были развиты и сформулированы Зоммерфельдом для случаев эллиптических орбит. В соответствии с правилами квантования Бора - Зоммерфельда 

,

,

где  – азимутальное квантовое число,  – радиальное квантовое число. Азимутальным квантовым числом определяется момент импульса электрона:

.

Из решения задачи Кеплера следуют выражения для энергии электрона , длины большой  и малой полуосей эллиптической орбиты:

.                                                              (11)

                                                       (12)

,                                                                   (13)

где - главное квантовое число, =1,2,…, ,  - первый боровский радиус.

Как видно из формул (8) и (11), энергия электрона определяется главным квантовым числом  при его движении как по круговой, так и по эллиптической орбите, и не зависит от радиального и азимутального квантовых чисел, взятых по отдельности.

Из квантования эллиптических орбит следует (формулы (11)-(13)), что определенному значению энергии электрона  соответствует  эллиптических орбит с одинаковой большой полуосью и различными малыми полуосями, соответствующими значениям =1,2,…,.). Этот факт является примером вырождения энергетических уровней.

Теория Бора явилась важным этапом в понимании внутриатомных явлений. На основе теории Бора был классифицирован эмпирически полученный материал атомной и молекулярной спектроскопии. Она подготовила почву для осознания того, что для объяснения явлений микромира недостаточно классических понятий и классических законов. В области микромира нужны принципиально новые (квантовые) понятия и законы.

Вместе с тем теория Бора описывала только одноэлектронные атомные системы. Не объяснила она также образования молекул и закономерностей в их спектрах. В рамках этой теории остались нерешенными вопросы о поляризации излучения атомов и интенсивности спектральных линий. Самым же главным недостатком теории Бора явилась ее внутренняя противоречивость.

Тем не менее нельзя недооценивать значимость теории Бора как промежуточного этапа на пути к более совершенной и последовательной теории, какой является квантовая механика.

PAGE  3


С.Пашена

Е

0

1

2

3

4

5

n

С.Лаймана

С.Бальмера

Рисунок 1 - Схема энергетических уровней водородоподобной системы (без соблюдения масштаба)


 

А также другие работы, которые могут Вас заинтересовать

42267. Планирование и организация рекламной деятельности туристского агентства Черномор Тур 177.49 KB
  Реклама - настолько сильное средство, что она может помочь продать совершенно плохой и негодный, неконкурентоспособный товар. Реклама, прежде всего, стимулирует спрос на предлагаемые товары. Механизм действия рекламы очень прост - потенциальный покупатель, услышав (увидев) о каком-либо товаре, которого у него нет, сразу захочет его купить, разумеется, при наличии денег.
42269. КООРДИНАТНАЯ АТС ТИПА АТСКУ 33.5 KB
  Основными особенностями координатных систем являются применение коммутационных блоков построенных на МКС с использованием звеньевого включения; регистровое косвенное управление; обходной способ установления соединения с применением общих управляющих устройствмаркеров. функцию управления поиском осуществляет маркер чаще всего обслуживающий всего один коммутационный блок ступени искания. В функции маркера входит определение номера входящей линии по которой поступил вызов; определение исходящей линии любой свободной или по информации...
42270. ОПРЕДЕЛЕНИЕ РАЗРЕШАЮЩЕЙ СПОСОБНОСТИ ПРИЗМ 601 KB
  По критерию Релея раздельное наблюдение изображения 1 и 2 двух близко расположенных точечных объектов возможно когда расстояние x между ними равно радиусу центрального дифракционного кружка т. В этом случае контраст элементов результирующего изображения который вычисляется по формуле .26 показан объектив в фокальной плоскости которого построены дифракционные изображения 1 и 2 с расстоянием x между ними. Использование критерия Релея приводит к контрасту результирующего изображения К=026.
42271. Прилади й методи контролю метеорологічних умов на виробництві 128.5 KB
  До показників які характеризують метеорологічні умови мікроклімат належать: температура відносна вологість швидкість руху повітря теплої випромінювання. Пояснення термінів що є в таблиці 5: Холодний період року період року який характеризуєте середньодобовою температурою зовнішнього повітря рівною 10С і нижче. Теплий період року період року який характеризуєте середньодобовою температурою зовнішнього повітря вище 10С. Вимірювання температури повітря.
42273. Основы работы с интерфейсом оборудования Cisco 463 KB
  Новые приобретаемые навыки в работе с оборудованием Cisco: Изменение имени оборудования hostnme; Вход в привилегированный режим enble; Вход в режим конфигурации настроек configure terminl; Вход в режим конфигурирования линий консоль терминальные подключения line; Вход в режим конфигурирования интерфейсов виртуальный сетей interfce VLN ; Задание пароля для перехода в привилегированный режим enble secret; Задание ipадреса для интерфейса виртуальной сети коммутатором ip ddress ; Сохранение текущей...
42274. ИЗУЧЕНИЕ СТРУКТУРНОЙ СХЕМЫ КВАЗИЭЛЕКТРОННОЙ АТС “КВАНТ” 73.5 KB
  Изучение принципов построения и структурной схемы квазиэлектронной АТС €œКвантâ€.Изучить принципы построения КЭ АТС Квантâ€. Изучить конструкцию и технические характеристики КЭ АТС â€œКвантâ€.
42275. КОНТРОЛЬ ФОРМЫ ПОЛИРОВАННЫХ СФЕРИЧЕСКИХ ПОВЕРХНОСТЕЙ ТЕНЕВЫМ МЕТОДОМ 351 KB
  Форма волнового фронта падающего света должна быть известна заранее или соответствовать идеальной форме поверхности контролируемой детали. При отражении фронта световой волны от поверхности имеющей зональные и местные ошибки он деформируется в соответствии с видом и конфигурацией этих ошибок. Деформация h фронта: где  ошибка поверхности детали;  угол падения света на поверхность детали.