28177

Искусственная анизотропия, создаваемая в результате механического деформирования, воздействия электрического (эффекты Керра и Поккельса) и магнитного (эффект Коттона - Мутона) поля. Естественная и искусственная (эффект Фарадея) оптическая активность

Доклад

Физика

Искусственная анизотропия создаваемая в результате механического деформирования воздействия электрического эффекты Керра и Поккельса и магнитного эффект Коттона Мутона поля. Естественная и искусственная эффект Фарадея оптическая активность Среды в которых скорость распространения света в различных направлениях неодинакова называют оптически анизотропными. был открыт эффект Керра возникновение двулучепреломления под действием электрического поля рисунок 2. Явление Керра квадратичный электрооптический эффект объясняется...

Русский

2013-08-20

51 KB

25 чел.

56. Искусственная  анизотропия,  создаваемая в результате механического   деформирования, воздействия электрического (эффекты Керра и Поккельса) и магнитного (эффект Коттона -  Мутона) поля. Естественная и искусственная (эффект Фарадея) оптическая активность

Среды, в которых скорость распространения света в различных направлениях неодинакова, называют оптически анизотропными. Анизотропия свойств вещества обусловлена его внутренним строением. Различают естественную и искусственную анизотропию.

Искусственная анизотропия среды может быть обусловлена действием механических сил, электрического или магнитного поля.

При механическом воздействии на изотропную среду внешней силы F (рисунок 1) она становится подобной одноосному кристаллу.

При этом оптическая ось параллельна направлению механического воздействия, а величина анизотропии пропорциональна давлению: , где k – константа, зависящая от свойств среды. Разность фаз, которую приобретают о- и е-волны, прошедшие пластинку толщины d, равна

,

где  - новая константа. В зависимости от рода вещества она может быть положительной или отрицательной. Кроме того, она зависит от длины волны. На явлении искусственной анизотропии, обусловленной наличием механических напряжений в материале, основан метод фотоупругости.

В 1875 г. был открыт эффект Керра – возникновение двулучепреломления под действием электрического поля (рисунок 2.

 Разность показателей преломления обыкновенной и необыкновенной волн пропорциональна квадрату напряженности Е электрического поля, и разность фаз определяется выражением: , где В – постоянная Керра, зависящая от рода вещества, d – толщина слоя вещества. Явление Керра (квадратичный электрооптический эффект) объясняется ориентирующим действием внешнего электрического поля на анизотропные молекулы жидкости. Такое действие может быть обусловлено или наличием у молекул постоянного электрического момента (дипольные молекулы), или дипольным моментом, приобретаемым во внешнем электрическом поле.

 Для кристаллов-пьезоэлектриков наблюдается линейный электрооптический эффект (эффект Поккельса). Открытый в 1894 г. немецким физиком Поккельсом, он долгое время не исследовался, главным образом, потому, что для достижения заметного эффекта требуются высокие напряжения (десятки и сотни киловольт). В этом эффекте величина искусственной анизотропии кристалла пропорфиональна первой степени напряженности внешнего электрического поля.  В настоящее время в лазерной технике широко используются элементы управления когерентным оптическим излучением лазеров, основанные на эффекте Поккельса. В частности, такие элементы используются для прерывания пучков (затворы),  модуляции их характеристик, для изготовления сканирующих и отклоняющих элементов в лазерной технике.

 В изотропном веществе, помещенном в достаточно сильное магнитное поле, напряженность которого перпендикулярна направлению распространения монохроматического света, возникает эффект Коттона – Мутона (фр. физики), состоящий в возникновении искусственной анизотропии, пропорциональной квадрату напряженности магнитного поля: , где Н – напряженность магнитного поля. Постоянная Коттона – Мутона С обратно пропорциональна абсолютной температуре вещества. Аномально большие значения С имеет для жидких кристаллов и коллоидных растворов. Изучая эффект Коттона –Мутона, можно получить информацию о структуре молекул, образовании межмолекулярных агрегатов и подвижности молекул.

При прохождении оптического излучения через некоторые вещества (кристаллы, растворы) наблюдается вращение направления поляризации линейно поляризованного света. Это явление называют естественной оптической активностью. По теории Френеля, это явление обусловлено тем, что в веществе происходит циркулярное двулучепреломление, и лево- и правоциркулярно поляризованные волны распространяются в среде в одном направлении, но с разными скоростями. Направление поворота (по или против часовой стрелки) зависит от того, у какой волны скорость больше. Различают право- и левовращающие вещества.

Угол поворота плоскости поляризации:

- для оптически активных кристаллов и чистых жидкостей ;

- для оптически активных растворов ,

где  – длина пути, пройденного светом в среде, α и – удельное вращение кристалла и растворённого вещества соответственно; с – массовая концентрация оптически активного вещества в растворе.

Под действием внешнего магнитного поля, индукция которого направлена вдоль направления распространения света возникает искусственная оптическая активность (эффект Фарадея). Угол поворота плоскости поляризации ,

где  – постоянная Верде, зависящая от рода вещества; d – длина пути, пройденного светом в веществе, находящемся в магнитном поле напряженности Н. Характерной чертой эффекта Фарадея является то, что направление вращения плоскости поляризации не изменяется при изменении направления распространения света на противоположное – эффект накапливается при многократном прохождении света через кристалл или кювету с раствором.


+

F

Поляризатор

Анализатор

Пластинка, изотропная в отсутствие воздействия

Рисунок 1 – Схема наблюдения анизотропии, обусловленной механическим воздействием

Кювета с нитробензолом

Рисунок 2 – Схема наблюдения эффекта Керра


 

А также другие работы, которые могут Вас заинтересовать

77984. Компоненты переключатели 57.5 KB
  TCheckBox независимый переключатель. Независимый переключатель TCheckBox используется для того чтобы пользователь мог указать свое решение типа Да Нет или Да Нет Не совсем в последнем случае в окошке компонента устанавливается флаг выбора но само окошко закрашивается серым цветом. В составе диалогового окна может быть несколько компонентов TCheckBox. Свойства и методы компоненты TCheckBox.
77985. Конструкторы и деструкторы 28.5 KB
  Конструкторы — это специальные методы, создающие и инициализирующие объект. Объект создается выделением для него области в динамически распределяемой памяти. Объявление конструктора выглядит так же, как объявление процедуры, но предваряется ключевым словом constructor. В качестве имени конструктора обычно задают имя Create.
77986. Массивы, одномерные массивы 46 KB
  Каждый элемент массива имеет уникальный номер индекс с помощью которого к элементу массива можно обращаться как к переменной. Имя массива идентификатор составляют тем же правилам что и для переменных. Количество индексов определяет размерность массива. Математическим эквивалентом одномерного массива является вектор.
77987. Навигационный доступ к данным в БД 65.5 KB
  Записи удовлетворяющие некоторому условию выдаются группами; даже если условию удовлетворяет только одна запись считается что в данном случае группа состоит из одной записи. Для этого такие записи в НД нужно отыскать для чего применяются навигационные методы. Под курсором набора данных понимается указатель текущей записи в конкретном наборе данных. Текущая запись та запись над которой в данный момент времени можно выполнять какие-либо операции удаление изменение чтение значений содержащихся в записи полей.
77988. Оператор выбора CASE 26 KB
  Здесь выражение - это выражение проядкого типа. Вначале вычисляется значение этого выражения. Затем полученное значение последовательного сравнивается с константами из списков меток. Если значение выражения совпадает с какой-нибудь константой, то выполняется соответствующий оператор. Если значение выражения не совпадает ни с одной костантой, то выполняется оператор, стоящий за словом end.
77989. Оператор цикла с параметром 30 KB
  Оператор for действует следующим образом. Вначале вычисляются начальное и конечное значение счетчика. Далее счетчику присваивается начальное значение. Затем значение счетчика сравнивается с конечным значением. Далее, пока счетчик меньше или равен конечному значению (в первым варианте) или больше или равен (во втором варианте), выполняется очередная итерация цикла. В противном случае происходит выход из цикла
77991. Основные принципы ООП. Инкапсуляция. Понятие класса, объекта. Поля, методы, свойство объектов 48 KB
  Понятие класса объекта. Объект это экземпляр какого-либо класса. Вы объявляете что новый класс TNewObject TNewObject clssTOldObject; является потомком или дочерним классом старого класса TOldObject называемого предком или родительским классом и добавляете к нему новые поля методы и свойства иными словами то что нужно при переходе от общего к частному. Унаследованные от класса-предка поля и методы доступны в дочернем классе; если имеет место совпадение имен методов то говорят что они перекрываются.