28178

Тепловое излучение тел и его законы. Ультрафиолетовая катастрофа. Формула Планка

Доклад

Физика

Отличительной чертой теплового излучения является то что оно возникает за счет внутренней энергии тела. Тепловое излучение имеет сплошной спектр положение максимума в спектральной кривой излучения зависит от температуры. При полном термодинамическом равновесии все части системы имеют одинаковую температуру и энергия теплового излучения испускаемого каждым телом компенсируется энергией поглощаемого этим телом теплового излучения других тел. Спектр равновесного излучения не зависит от природы вещества.

Русский

2013-08-20

102 KB

28 чел.

57. Тепловое излучение тел и  его  законы.  Ультрафиолетовая катастрофа. Формула Планка

Излучение, причиной которого является возбуждение атомов и молекул вещества вследствие его теплового движения, называется тепловым, или температурным излучением. Отличительной чертой теплового излучения является то, что оно возникает за счет внутренней энергии тела. Тепловое излучение имеет сплошной спектр, положение максимума в спектральной кривой излучения зависит от температуры. Тепловое излучение испускают все нагретые тела: накаленный металл, земная атмосфера, океанская вода и т.д.

В статистической физике сформулировано общее положение, называемое принципом детального равновесия, согласно которому любой микропроцесс в равновесной системе протекает с той же скоростью, что и обратный ему.

Тепловое излучение возникает в условиях детального равновесия в веществе для всех безызлучательных процессов, то есть различных типов столкновений частиц в газах и плазме, для обмена энергиями электронного и колебательного движений в твердых телах и т.д. Равновесное состояние вещества в каждой точке пространства – состояние локального термодинамического равновесия – характеризуется при этом значением температуры, от которого зависит тепловое излучение в данной точке.

При полном термодинамическом равновесии все части системы имеют одинаковую температуру, и энергия теплового излучения, испускаемого каждым телом, компенсируется энергией поглощаемого этим телом теплового излучения других тел. В этом случае детальное равновесие имеет место и для излучательных переходов, тепловое излучение находится в равновесии с веществом и называется равновесным излучением. Равновесным является тепловое излучение абсолютно черного тела. Спектр равновесного излучения не зависит от природы вещества.

 Абсолютно черное тело – термин, которым в теории теплового излучения называют тело, полностью поглощающее весь падающий на него поток излучения. Коэффициент поглощения абсолютно черного тела равен единице и не зависит от длины волны излучения. Наиболее близким приближением к а.ч.т. является непрозрачный сосуд с небольшим отверстием, стенки которого имеют одинаковую температуру. Луч, попавший в такой сосуд, испытывает многократные отражения, частично поглощаясь при каждом из них. Вследствие этого стенки сосуда поглощают его полностью. Близким к единице коэффициентом поглощения обладают сажа и платиновая чернь.

Интенсивность излучения а.ч.т. выше, чем всех остальных тел при той же температуре. Для нечёрных тел справедлив закон Кирхгофа: отношение спектральной плотности энергетической светимости любого тела  к его спектральному коэффициенту поглощения   при той же длине волны и температуре одинаково для всех тел.

Так как для а.ч.т.  = 1, то из закона Кирхгофа следует, что отношение / для всех тел равно спектральной плотности энергетической светимости а.ч.т.  при той же температуре и длине волны:

.

Зная функциональную зависимость спектральной плотности энергетической светимости а.ч.т. от длины волны и температуры и определяя опытным путем коэффициент поглощения рассматриваемого тела, можно найти спектральную плотность энергетической светимости для любого тела:

.

Поэтому были предприняты многочисленные попытки получить теоретическим путем закон излучения а.ч.т. на основе законов классической физики.

В 1896 г. немецким физиком Вильгельмом Вином была предложена формула для описания распределения энергии в спектре равновесного излучения (формула Вина):

,                                                (1)

где  – спектральная плотность энергии излучения (то есть энергия излучения, заключенного в единичном объеме, приходящаяся на единичный интервал частот), С1 и С2 – постоянные коэффициенты. Эта формула хорошо согласовывалась с результатами экспериментальных исследований при больших частотах, но при малых частотах рассчитанные по этой формуле значения  существенно отличались от полученных экспериментально (рисунок ).

 В 1900 г. Дж. У. Рэлей на основе классической электродинамики и статистических методов, развитых Больцманом, получил следующее выражение для спектральной плотности энергии равновесного излучения:

,                                             (2)

где  k – постоянная Больцмана. Эту же формулу в 1905 вывел Дж. Джинс, подчеркнув, что в рамках классической физики выражение (2.2) является единственно возможным. Формула Рэлея – Джинса (2) хорошо согласуется с экспериментальными данными только при малых частотах. Более того, предсказываемый в соответствии с (2) неограниченный рост спектральной плотности  при ν → ∞ должен обусловить неограниченное увеличение полной энергии излучения и остывание до температуры равной абсолютному нулю излучающих тел! Такое разительное противоречие между результатами классической теории и опытными фактами назвали «ультрафиолетовой катастрофой».

Формулу для спектральной плотности энергии равновесного излучения, находящуюся в полном соответствии с экспериментальными данными во всём диапазоне частот, впервые удалось найти немецкому физику Максу Планку в 1900 году. Он получил выражение 

.                                     (3)

Для обоснования формулы (3) Планку пришлось сделать предположение, несовместимое с представлениями классической физики – выдвинуть гипотезу о квантовании энергии.

Из формулы Планка (3) легко найти спектральную плотность энергии излучения, приходящуюся на единичный интервал длин волн  и пропорциональную ей спектральную интенсивность излучения, испускаемого в единичном интервале длин волн с единицы площади поверхности тела, :

.                               (4)

Функции ,  и , определяемые формулой Планка, являются универсальными функциями частоты (длины волны) и температуры, не зависящими от природы вещества, с которым излучение находится в равновесии.

В 1916 г. формула Планка была получена А. Эйнштейном  теоретическим путем на основе рассмотрения квантовых переходов для атомов, находящихся в равновесии с излучением.

Функции Планка изображаются кривыми, имеющими максимум при некоторой частоте (длины волны) и асимптотически стремящимися к нулю при  и при . Дифференцируя функцию Планка по частоте (длины волны) и приравнивая производную нулю, можно найти положение максимума. Оно определяется законом смещения Вина:

,

где b = 2,896.10-3 м.К. Этот закон впервые получен Вином в 1893 г. из термодинамических соображений.

Положение максимума на графике функции Планка с повышением температуры излучающего тела смещается в коротковолновую область спектра.

Площадью, заключенной между кривой Планка и шкалой длин волн, определяется суммарная энергия, излучаемая а.ч.т. Аналитически эту энергию можно определить, интегрируя формулу Планка по длине волны (частоте). В результате интегрирования от 0 до  находят полную объемную плотность энергии –

, где ,

и полную излучательную способность а.ч.т. (закон Стефана-Больцмана):

,

где  Вт/(м24) – постоянная Стефана-Больцмана.

При  и при  соответственно из формулы Планка следуют формулы Вина ( и Рэлея-Джинса (.

 Максимальное значение спектральной излучательной способности тела пропорционально пятой степени температуры: .

 Законы теплового излучения используются в оптических методах измерений высоких температур (оптическая пирометрия), при расчете энергии излучения, в теплотехнике, при конструировании источников света (лампа накаливания, дуговые лампы).


T2

T1

EMBED Equation.3  

EMBED Equation.3  

T2 >T1

EMBED Equation.3  

а – формула Рэлея-Джинса; б – формула Вина; в – экспериментальное распределение; г – формула Планка

Распределение спектральной плотности энергии равновесного излучения

а

в

г

б

EMBED Equation.3  

λ


 

А также другие работы, которые могут Вас заинтересовать

29414. Бюджетный дефицит и государственный долг: основные определения, показатели и проблемы количественной оценки. Государственный долг и дефицит платежного баланса. Влияние государственного долга на накопление частного капитала 50 KB
  Бюджетный дефицит и государственный долг: основные определения показатели и проблемы количественной оценки. Государственный долг и дефицит платежного баланса. Превышение расходов государства над его доходами образует бюджетный дефицит БД. Подавляющее большинство стран сводит свой бюджет с дефицитом.
29415. Ключевые макроэкономические проблемы российской экономики 67 KB
  Можно сделать вывод: главная причина ошибочности социальноэкономической политики – использование экономики России стандартных макроэкономических рецептов разработанных для стран с типом экономики зеркально противоположным российскому. Поэтому напрашивается первый рецепт долгосрочной политики – сделать диверсификацию экономики главной целью политики государства. Макроэкономические проблемы российской экономики АЛЕКСЕЙ КУДРИН министр финансов РФ выбрал более менее доступное там много Снижение конкурентоспособности К началу 2007 г.
29416. Теоретические подходы к моделированию инфляционных процессов. Типы и виды инфляции. Темп инфляции и его колебания. Возможности инфляционного финансирования дефицита гос. бюджета 1.32 MB
  Темп инфляции и его колебания Инфляция inflation от итальянского слова inflatio что означает вздутие представляет собой устойчивую тенденцию роста общего уровня цен. В этом определении важны следующие слова: 1 устойчивая что означает что инфляция – это длительный процесс устойчивая тенденция и поэтому ее следует отличать от скачка цен; 2 общего уровня цен. Это значит что инфляция не означает роста всех цен в экономике. Цены на отдельные товары могут вести себя поразному: повышаться понижаться оставаться без...
29417. Формы безработицы и ее естественный уровень. Регулирование уровня безработицы. Взаимосвязь инфляции и безработицы 61 KB
  Формы безработицы и ее естественный уровень. Регулирование уровня безработицы. Взаимосвязь инфляции и безработицы. По социально экономическому содержанию выделяют следующие формы безработицы: 1.
29418. Банковская система и ее роль в современной экономике. Центральный банк, его статус и цели. Антиинфляционный курс Банка России 114 KB
  Центральный банк его статус и цели. Антиинфляционный курс Банка России. Понятие банковской системы ее элементы и взаимосвязи.
29419. Инвестиции и их функциональная роль. Сбережения, инвестиции, мультипликатор инвестиций. Инвестиции и реальный экономический рост 1.87 MB
  Инвестиции и их функциональная роль. Сбережения инвестиции мультипликатор инвестиций. Инвестиции и реальный экономический рост Староверова Г.
29420. Цикличность как всеобщая форма экономической динамики 58 KB
  Виды экономических циклов Современная экономическая наука насчитывает большое количество видов циклов. Объективными основаниями разграничения экономических циклов являются: а периодичность обновления отдельных частей капитала; б изменения обусловленные обновлением элементов зданий сооружений; в изменения обусловленные демографическими процессами и сельским хозяйством. Можно выделить следующие основные виды экономических циклов. Этот вид циклов Китчин связывал с изменениями мировых запасов золота Э.
29421. Денежный рынок в макроэкономике 131.5 KB
  В экономической литературе имеется несколько определений понятия денег. Наиболее характерная черта денег их высокая ликвидность. Сущность денег проявляется в их функциях. Маркс выделял пять функций денег: мера стоимости; средство обращения; образование сокровищ; средство платежа; мировые деньги.