28184

Распространение света в изотропных средах. Отражение и преломление света на границе между диэлектриками. Основные законы геометрической оптики. Формулы Френеля

Доклад

Физика

При этом падающий отражённый и преломленный лучи лежат в одной плоскости с перпендикуляром восстановленным к границе раздела сред в точке падения О. Углы соответственно углы падения отражения преломления волн. Амплитуду падающей волны разложим на составляющие Ер параллельную плоскости падения и Еs перпендикулярную плоскости падения. Для составляющих вектора Е перпендикулярных плоскости падения рисунок 3 выполняются условия в которых индексы при Е и p при Н опущены: .

Русский

2013-08-20

146 KB

48 чел.

47. Распространение света в изотропных средах. Отражение и преломление света на границе между диэлектриками. Основные законы геометрической оптики. Формулы Френеля

В однородной изотропной среде свет распространяется прямолинейно, в любом направлении с одинаковой скоростью.  При этом форма волнового фронта не изменяется –  плоская волна остается плоской, сферическая волна – сферической и т.п. Векторы напряжённостей электрического  и магнитного поля волны образуют правую тройку векторов с вектором Умова – Пойнтинга , модуль которого характеризует плотность энергии волны.

На границе раздела двух однородных изотропных сред происходит отражение и преломление световых пучков, направление распространения волн изменяется в соответствии с законами отражения и преломления (рисунок 1).

Названные законы можно получить, воспользовавшись условием непрерывности тангенциальных составляющих напряженности электрического поля волны на границе раздела сред: . Пользуясь этим условием для плоской волны, наклонно падающей в точке  О на границу раздела сред, несложно доказать, что:

  1.  частота излучения при отражении и преломлении на границе раздела сред не изменяется, ;
  2.  свет отражается под таким же углом, под каким он падает на границу раздела, закон отражения света;
  3.  выполняется закон преломления света  (закон Снеллиуса).

При этом падающий, отражённый и преломленный лучи лежат в одной плоскости с перпендикуляром, восстановленным к границе раздела сред в точке падения О.

Законы  отражения и преломления являются основой геометрической оптики. Они получаются в электромагнитной теории без каких-либо специальных предположений, как следствие граничных условий для уравнений Максвелла и выполняются в любом диапазоне частот.

В 1823 г. французским физиком О.Ж. Френелем на основе представлений об упругих поперечных колебаниях эфира получены формулы, в которых определены отношения амплитуды, фазы и состояния поляризации отраженной и преломленной волн, возникающих при прохождении света через границу раздела двух прозрачных диэлектриков, к соответствующим характеристикам падающей световой волны. Такие же соотношения получаются в результате строгого вывода на основе электромагнитной теории, при решении уравнений Максвелла.

Пусть плоская световая волна падает на границу раздела двух сред с показателями преломления  и . Углы , ,  - соответственно углы падения, отражения, преломления волн. При этом всегда  и .

Амплитуду падающей волны  разложим на составляющие Ер, параллельную плоскости падения, и Еs, перпендикулярную плоскости падения. Аналогично разложим на составляющие Е1p и E1s,  E2p и E2s амплитуды E1 и E2 отраженной и преломленной волн. Обозначения , ,  на рисунке 2 соответствуют векторам Умова – Пойнтинга падающей, отраженной и преломлённой волн; для показателей преломления сред выполнено условие , поэтому .

Направления векторов для какого-то момента времени показаны на рисунке 2. Составляющие векторов напряженности магнитного поля направлены перпендикулярно плоскости чертежа по направлению к читателю. На основании граничных условий имеем:

;  .

При этом вторым индексом, одинаковым для всех волн, отмечены амплитудные значения проекций векторов; индексы p (при Е) и  (при Н) в уравнениях опущены.

Так как , , , , получим:

, .

После несложных преобразований этих уравнений найдем первую пару формул Френеля:

;     .

Для составляющих вектора Е, перпендикулярных плоскости падения (рисунок 3), выполняются условия, в которых индексы (при Е) и  p (при Н) опущены:

,  .

После преобразований можно получить выражения для составляющих вектора напряженности электрического поля для отраженной и преломленной волны, перпендикулярных плоскости падения (вторая пара формул Френеля):

;      

.

Анализируя формулы Френеля, легко показать, что преломленная волна имеет  одинаковую фазу с падающей волной, а отраженная волна имеет фазу, отличающуюся на  от фазы падающей волны (потеря полуволны при отражении), если отражение происходит от оптически более плотной среды (n2 > n1).

В частном случае, когда отраженный и преломленный лучи перпендикулярны друг другу, из уравнений Френеля следует закон Брюстера: . Соответствующий угол падения называют углом Брюстера: . При переходе из воздуха в стекло с показателем преломления п = 1,5 угол Брюстера близок к 570.

Энергетические коэффициенты отражения и пропускания определятся уравнениями

, ,

их явные выражения легко получить после подстановки соответствующих формул. При этом нужно учесть, что ортогонально поляризованные волны не интерферируют, поэтому коэффициенты отражения для параллельных и перпендикулярных плоскости падения составляющих аддитивно складываются.

Из формул Френеля следует соотношение:

.

При нормальном падении света на границу раздела сред  теряется различие между параллельной и перпендикулярной плоскости падения составляющими, так как теряет смысл само понятие о плоскости падения. При этом  и коэффициент отражения

,  коэффициент прохождения .

Несложно показать, что при падении света под углом Брюстера от границы раздела отражается только составляющая вектора Еs, а параллельная плоскости падения составляющая обращается в нуль. Таким образом, при падении пучка под углом Брюстера отраженный свет полностью поляризован в плоскости, перпендикулярной плоскости падения.

На основе формул Френеля можно показать, что при углах падения, бóльших предельного угла , имеет место полное отражение света от границы раздела со средой, оптически менее плотной среды, из которой падает свет.

Формулы Френеля не выполняются при отражении от металлов. Их аналоги могут быть получены после введения понятия о комплексном показателе преломления среды.

Условие применимости формул Френеля – независимость показателя преломления среды от амплитуды вектора электрической напряженности световой волны. Это условие не выполняется для потоков большой мощности, излучаемых лазерами. В таких ситуациях необходимо использовать формулы, которые получают в нелинейной оптике.

φ1

φ2

Рисунок 1 – Отражение и преломление света

на границе раздела оптически изотропных сред

n1

n2

O

Нs

Нs

φ2

φ1

φ

Е2p

Е1p

E

n1

n2

Нs

Рисунок 2 – К выводу формул Френеля для составляющих вектора , параллельных плоскости падения волны

Рисунок 3 – К выводу формул Френеля для составляющих вектора , перпендикулярных плоскости падения волны

n2

n1

H

Е1p

Е2p

φ

φ1

φ2

Нs

Es

Нs


 

А также другие работы, которые могут Вас заинтересовать

37445. Химический состав и свойства товаров 17.78 KB
  Медикобиологические требования к качеству продовольственных товаров — комплекс критериев, определяющих пищевую ценность и безопасность продовольственного сырья и продовольственных товаров.
37446. Сохраняющие факторы: упаковка товаров, транспортирование, хранение 18.84 KB
  Тара в зависимости от функционального назначения подразделяется на потребительскую и транспортную. В потребительскую тару расфасовывают продукцию (банка, бутылка, ампула, туба и др.)
37447. Средства товарной информации. Виды и формы 19.27 KB
  От того, насколько качественны эти информационные услуги, зависят скорость продвижения товаров по каналам распределения, интенсивность сбыта, стимулирование продаж, создание потребительских предпочтений и в конечном счете жизненный цикл товара
37448. Мастер общения. Советы практикующего психолога 439.5 KB
  Советы практикующего психолога ДУМАЕТЕ У ВАС НЕТ ЗАКОМПЛЕКСОВАННОСТИ В ОБЩЕНИИ Думаю что нет такс усмешкой и непоколебимой самоуверенностью обычно отвечают молодые люди. Но если ответ противоположный Как только представите себя в аудитории или на сцене так сразу все внутри заполняет липкий страх ногируки становятся деревянными во рту пересыхает перед глазами плывет Да и в обычном общении немало затруднений Вот тогда поспешите преодолеть закомплексованность в общении. В результате сформировалась новая задача вначале снять у...
37449. РЕШЕНИЕ ЗАДАЧИ ПОИСКА ОПТИМАЛЬНОГО МАРШРУТА ГРУЗОПЕРЕВОЗОК. СЕТЕВЫЕ ЗАДАЧИ 1.83 MB
  Mathematica — система компьютерной алгебры разработанная компанией Wolfram Research. Содержит множество функций как для аналитических преобразований, так и для численных расчётов. Кроме того, программа поддерживает работу с графикой и звуком, включая построение дву- и трёхмерных графиков функций, рисование произвольных геометрических фигур, импорт и экспорт изображений и звука.