28184

Распространение света в изотропных средах. Отражение и преломление света на границе между диэлектриками. Основные законы геометрической оптики. Формулы Френеля

Доклад

Физика

При этом падающий отражённый и преломленный лучи лежат в одной плоскости с перпендикуляром восстановленным к границе раздела сред в точке падения О. Углы соответственно углы падения отражения преломления волн. Амплитуду падающей волны разложим на составляющие Ер параллельную плоскости падения и Еs перпендикулярную плоскости падения. Для составляющих вектора Е перпендикулярных плоскости падения рисунок 3 выполняются условия в которых индексы при Е и p при Н опущены: .

Русский

2013-08-20

146 KB

55 чел.

47. Распространение света в изотропных средах. Отражение и преломление света на границе между диэлектриками. Основные законы геометрической оптики. Формулы Френеля

В однородной изотропной среде свет распространяется прямолинейно, в любом направлении с одинаковой скоростью.  При этом форма волнового фронта не изменяется –  плоская волна остается плоской, сферическая волна – сферической и т.п. Векторы напряжённостей электрического  и магнитного поля волны образуют правую тройку векторов с вектором Умова – Пойнтинга , модуль которого характеризует плотность энергии волны.

На границе раздела двух однородных изотропных сред происходит отражение и преломление световых пучков, направление распространения волн изменяется в соответствии с законами отражения и преломления (рисунок 1).

Названные законы можно получить, воспользовавшись условием непрерывности тангенциальных составляющих напряженности электрического поля волны на границе раздела сред: . Пользуясь этим условием для плоской волны, наклонно падающей в точке  О на границу раздела сред, несложно доказать, что:

  1.  частота излучения при отражении и преломлении на границе раздела сред не изменяется, ;
  2.  свет отражается под таким же углом, под каким он падает на границу раздела, закон отражения света;
  3.  выполняется закон преломления света  (закон Снеллиуса).

При этом падающий, отражённый и преломленный лучи лежат в одной плоскости с перпендикуляром, восстановленным к границе раздела сред в точке падения О.

Законы  отражения и преломления являются основой геометрической оптики. Они получаются в электромагнитной теории без каких-либо специальных предположений, как следствие граничных условий для уравнений Максвелла и выполняются в любом диапазоне частот.

В 1823 г. французским физиком О.Ж. Френелем на основе представлений об упругих поперечных колебаниях эфира получены формулы, в которых определены отношения амплитуды, фазы и состояния поляризации отраженной и преломленной волн, возникающих при прохождении света через границу раздела двух прозрачных диэлектриков, к соответствующим характеристикам падающей световой волны. Такие же соотношения получаются в результате строгого вывода на основе электромагнитной теории, при решении уравнений Максвелла.

Пусть плоская световая волна падает на границу раздела двух сред с показателями преломления  и . Углы , ,  - соответственно углы падения, отражения, преломления волн. При этом всегда  и .

Амплитуду падающей волны  разложим на составляющие Ер, параллельную плоскости падения, и Еs, перпендикулярную плоскости падения. Аналогично разложим на составляющие Е1p и E1s,  E2p и E2s амплитуды E1 и E2 отраженной и преломленной волн. Обозначения , ,  на рисунке 2 соответствуют векторам Умова – Пойнтинга падающей, отраженной и преломлённой волн; для показателей преломления сред выполнено условие , поэтому .

Направления векторов для какого-то момента времени показаны на рисунке 2. Составляющие векторов напряженности магнитного поля направлены перпендикулярно плоскости чертежа по направлению к читателю. На основании граничных условий имеем:

;  .

При этом вторым индексом, одинаковым для всех волн, отмечены амплитудные значения проекций векторов; индексы p (при Е) и  (при Н) в уравнениях опущены.

Так как , , , , получим:

, .

После несложных преобразований этих уравнений найдем первую пару формул Френеля:

;     .

Для составляющих вектора Е, перпендикулярных плоскости падения (рисунок 3), выполняются условия, в которых индексы (при Е) и  p (при Н) опущены:

,  .

После преобразований можно получить выражения для составляющих вектора напряженности электрического поля для отраженной и преломленной волны, перпендикулярных плоскости падения (вторая пара формул Френеля):

;      

.

Анализируя формулы Френеля, легко показать, что преломленная волна имеет  одинаковую фазу с падающей волной, а отраженная волна имеет фазу, отличающуюся на  от фазы падающей волны (потеря полуволны при отражении), если отражение происходит от оптически более плотной среды (n2 > n1).

В частном случае, когда отраженный и преломленный лучи перпендикулярны друг другу, из уравнений Френеля следует закон Брюстера: . Соответствующий угол падения называют углом Брюстера: . При переходе из воздуха в стекло с показателем преломления п = 1,5 угол Брюстера близок к 570.

Энергетические коэффициенты отражения и пропускания определятся уравнениями

, ,

их явные выражения легко получить после подстановки соответствующих формул. При этом нужно учесть, что ортогонально поляризованные волны не интерферируют, поэтому коэффициенты отражения для параллельных и перпендикулярных плоскости падения составляющих аддитивно складываются.

Из формул Френеля следует соотношение:

.

При нормальном падении света на границу раздела сред  теряется различие между параллельной и перпендикулярной плоскости падения составляющими, так как теряет смысл само понятие о плоскости падения. При этом  и коэффициент отражения

,  коэффициент прохождения .

Несложно показать, что при падении света под углом Брюстера от границы раздела отражается только составляющая вектора Еs, а параллельная плоскости падения составляющая обращается в нуль. Таким образом, при падении пучка под углом Брюстера отраженный свет полностью поляризован в плоскости, перпендикулярной плоскости падения.

На основе формул Френеля можно показать, что при углах падения, бóльших предельного угла , имеет место полное отражение света от границы раздела со средой, оптически менее плотной среды, из которой падает свет.

Формулы Френеля не выполняются при отражении от металлов. Их аналоги могут быть получены после введения понятия о комплексном показателе преломления среды.

Условие применимости формул Френеля – независимость показателя преломления среды от амплитуды вектора электрической напряженности световой волны. Это условие не выполняется для потоков большой мощности, излучаемых лазерами. В таких ситуациях необходимо использовать формулы, которые получают в нелинейной оптике.

φ1

φ2

Рисунок 1 – Отражение и преломление света

на границе раздела оптически изотропных сред

n1

n2

O

Нs

Нs

φ2

φ1

φ

Е2p

Е1p

E

n1

n2

Нs

Рисунок 2 – К выводу формул Френеля для составляющих вектора , параллельных плоскости падения волны

Рисунок 3 – К выводу формул Френеля для составляющих вектора , перпендикулярных плоскости падения волны

n2

n1

H

Е1p

Е2p

φ

φ1

φ2

Нs

Es

Нs


 

А также другие работы, которые могут Вас заинтересовать

5036. Передача информации 67 KB
  Передача информации Информатизация – это производное от слова информация. Информатизация – это процесс получения, использования, хранения, передачи информации. На протяжении ХХ века сменялось множество способов обмена информацией. Если в X...
5037. Предмет, методы и функции региональной экономики 387 KB
  Предмет, методы и функции региональной экономики. Регионоведение — область научных знаний, изучающая территориальную организацию хозяйства. Предметом регионоведения являются экономические районы всех уровней — экономические зоны, укрупнен...
5038. Исследование линейных резистивных цепей 75.5 KB
  Исследование линейных резистивных цепей Цель работы: экспериментальное исследование линейных разветвлённых резистивных цепей с использованием методов наложения, эквивалентного источника и принципа взаимности. В работе исследуется резистивная цепь с...
5039. Проектирование металлорежущих инструментов. Проектирование круглого радиального фасонного резца 618.5 KB
  Проектирование круглого радиального фасонного резца Назначение фасонных резцов Фасонный резец - инструмент, предназначенный главным образом для использования в условиях серийного и массового производств, где все больший удельный вес приобрет...
5040. Измерение длины волны излучения лазера интерференционным методом 138 KB
  Измерение длины волны излучения лазера интерференционным методом Цель работы: ознакомиться с принципами работы лазеров измерить длину волны излучения лазера и сравнить спектры его индуцированного и спонтанного излучений. Приборы и принадлежности: г...
5041. Определение длин волн излучения источников дискретного и непрерывного спектров 187 KB
  Определение длин волн излучения источников дискретного и непрерывного спектров Цель работы: градуировка спектроскопа по известному спектру неона, определение длин волн в спектре паров ртути и границ видимого спектра лампы накаливания. Приборы и прин...
5042. Исследование статических характеристик полупроводниковых диодов 129.5 KB
  Исследование статических характеристик полупроводниковых диодов. Цель работы Изучить устройство полупроводникового диода, физические процессы, происходящие в нем, характеристики, параметры, а также типы и применение полупроводниковых диодов...
5043. Кинематический анализ и синтез плоских рычажных, рычажных, кулачковых и зубчатых механизмов 509.5 KB
  Структурный анализ механизма. Число степеней свободы механизма определяем по формуле П. Л. Чебышева. где n- число подвижных звеньев механизма, p5- число кинематических пар пятого класса, p4- число Кинематических пар четвертого класса. В ...
5044. Изучение структуры углеродистых сталей после различных видов термической обработки 94 KB
  Изучение структуры углеродистых сталей после различных видов термической обработки Цель работы - изучение влияния закалки и отпуска на структуру и свойства углеродистых сталей. Оборудование, оснастка, приборы: электрические камерные печи...