28184

Распространение света в изотропных средах. Отражение и преломление света на границе между диэлектриками. Основные законы геометрической оптики. Формулы Френеля

Доклад

Физика

При этом падающий отражённый и преломленный лучи лежат в одной плоскости с перпендикуляром восстановленным к границе раздела сред в точке падения О. Углы соответственно углы падения отражения преломления волн. Амплитуду падающей волны разложим на составляющие Ер параллельную плоскости падения и Еs перпендикулярную плоскости падения. Для составляющих вектора Е перпендикулярных плоскости падения рисунок 3 выполняются условия в которых индексы при Е и p при Н опущены: .

Русский

2013-08-20

146 KB

49 чел.

47. Распространение света в изотропных средах. Отражение и преломление света на границе между диэлектриками. Основные законы геометрической оптики. Формулы Френеля

В однородной изотропной среде свет распространяется прямолинейно, в любом направлении с одинаковой скоростью.  При этом форма волнового фронта не изменяется –  плоская волна остается плоской, сферическая волна – сферической и т.п. Векторы напряжённостей электрического  и магнитного поля волны образуют правую тройку векторов с вектором Умова – Пойнтинга , модуль которого характеризует плотность энергии волны.

На границе раздела двух однородных изотропных сред происходит отражение и преломление световых пучков, направление распространения волн изменяется в соответствии с законами отражения и преломления (рисунок 1).

Названные законы можно получить, воспользовавшись условием непрерывности тангенциальных составляющих напряженности электрического поля волны на границе раздела сред: . Пользуясь этим условием для плоской волны, наклонно падающей в точке  О на границу раздела сред, несложно доказать, что:

  1.  частота излучения при отражении и преломлении на границе раздела сред не изменяется, ;
  2.  свет отражается под таким же углом, под каким он падает на границу раздела, закон отражения света;
  3.  выполняется закон преломления света  (закон Снеллиуса).

При этом падающий, отражённый и преломленный лучи лежат в одной плоскости с перпендикуляром, восстановленным к границе раздела сред в точке падения О.

Законы  отражения и преломления являются основой геометрической оптики. Они получаются в электромагнитной теории без каких-либо специальных предположений, как следствие граничных условий для уравнений Максвелла и выполняются в любом диапазоне частот.

В 1823 г. французским физиком О.Ж. Френелем на основе представлений об упругих поперечных колебаниях эфира получены формулы, в которых определены отношения амплитуды, фазы и состояния поляризации отраженной и преломленной волн, возникающих при прохождении света через границу раздела двух прозрачных диэлектриков, к соответствующим характеристикам падающей световой волны. Такие же соотношения получаются в результате строгого вывода на основе электромагнитной теории, при решении уравнений Максвелла.

Пусть плоская световая волна падает на границу раздела двух сред с показателями преломления  и . Углы , ,  - соответственно углы падения, отражения, преломления волн. При этом всегда  и .

Амплитуду падающей волны  разложим на составляющие Ер, параллельную плоскости падения, и Еs, перпендикулярную плоскости падения. Аналогично разложим на составляющие Е1p и E1s,  E2p и E2s амплитуды E1 и E2 отраженной и преломленной волн. Обозначения , ,  на рисунке 2 соответствуют векторам Умова – Пойнтинга падающей, отраженной и преломлённой волн; для показателей преломления сред выполнено условие , поэтому .

Направления векторов для какого-то момента времени показаны на рисунке 2. Составляющие векторов напряженности магнитного поля направлены перпендикулярно плоскости чертежа по направлению к читателю. На основании граничных условий имеем:

;  .

При этом вторым индексом, одинаковым для всех волн, отмечены амплитудные значения проекций векторов; индексы p (при Е) и  (при Н) в уравнениях опущены.

Так как , , , , получим:

, .

После несложных преобразований этих уравнений найдем первую пару формул Френеля:

;     .

Для составляющих вектора Е, перпендикулярных плоскости падения (рисунок 3), выполняются условия, в которых индексы (при Е) и  p (при Н) опущены:

,  .

После преобразований можно получить выражения для составляющих вектора напряженности электрического поля для отраженной и преломленной волны, перпендикулярных плоскости падения (вторая пара формул Френеля):

;      

.

Анализируя формулы Френеля, легко показать, что преломленная волна имеет  одинаковую фазу с падающей волной, а отраженная волна имеет фазу, отличающуюся на  от фазы падающей волны (потеря полуволны при отражении), если отражение происходит от оптически более плотной среды (n2 > n1).

В частном случае, когда отраженный и преломленный лучи перпендикулярны друг другу, из уравнений Френеля следует закон Брюстера: . Соответствующий угол падения называют углом Брюстера: . При переходе из воздуха в стекло с показателем преломления п = 1,5 угол Брюстера близок к 570.

Энергетические коэффициенты отражения и пропускания определятся уравнениями

, ,

их явные выражения легко получить после подстановки соответствующих формул. При этом нужно учесть, что ортогонально поляризованные волны не интерферируют, поэтому коэффициенты отражения для параллельных и перпендикулярных плоскости падения составляющих аддитивно складываются.

Из формул Френеля следует соотношение:

.

При нормальном падении света на границу раздела сред  теряется различие между параллельной и перпендикулярной плоскости падения составляющими, так как теряет смысл само понятие о плоскости падения. При этом  и коэффициент отражения

,  коэффициент прохождения .

Несложно показать, что при падении света под углом Брюстера от границы раздела отражается только составляющая вектора Еs, а параллельная плоскости падения составляющая обращается в нуль. Таким образом, при падении пучка под углом Брюстера отраженный свет полностью поляризован в плоскости, перпендикулярной плоскости падения.

На основе формул Френеля можно показать, что при углах падения, бóльших предельного угла , имеет место полное отражение света от границы раздела со средой, оптически менее плотной среды, из которой падает свет.

Формулы Френеля не выполняются при отражении от металлов. Их аналоги могут быть получены после введения понятия о комплексном показателе преломления среды.

Условие применимости формул Френеля – независимость показателя преломления среды от амплитуды вектора электрической напряженности световой волны. Это условие не выполняется для потоков большой мощности, излучаемых лазерами. В таких ситуациях необходимо использовать формулы, которые получают в нелинейной оптике.

φ1

φ2

Рисунок 1 – Отражение и преломление света

на границе раздела оптически изотропных сред

n1

n2

O

Нs

Нs

φ2

φ1

φ

Е2p

Е1p

E

n1

n2

Нs

Рисунок 2 – К выводу формул Френеля для составляющих вектора , параллельных плоскости падения волны

Рисунок 3 – К выводу формул Френеля для составляющих вектора , перпендикулярных плоскости падения волны

n2

n1

H

Е1p

Е2p

φ

φ1

φ2

Нs

Es

Нs


 

А также другие работы, которые могут Вас заинтересовать

17883. ПОВЕДЕНИЕ СОВЕРШЕННО КОНКУРЕНТНОЙ ФИРМЫ НА ТОВАРНОМ РЫНКЕ 135.85 KB
  НАЗВАНИЕ ПРАКТИЧЕСКОГО ЗАНЯТИЯ: ПОВЕДЕНИЕ СОВЕРШЕННО КОНКУРЕНТНОЙ ФИРМЫ НА ТОВАРНОМ РЫНКЕ ЦЕЛЬ ЗАНЯТИЯ: Выявить основные характеристики совершенно конкурентного товарного рынка СКрынка объяснить неспособность невозможность воздействия СКфирм на рыночну...
17884. ПОВЕДЕНИЕ МОНОПОЛЬНОЙ ФИРМЫ НА ТОВАРНОМ РЫНКЕ 185.05 KB
  НАЗВАНИЕ ПРАКТИЧЕСКОГО ЗАНЯТИЯ: ПОВЕДЕНИЕ МОНОПОЛЬНОЙ ФИРМЫ НА ТОВАРНОМ РЫНКЕ ЦЕЛЬ ЗАНЯТИЯ: Рассмотреть понятие монополии условия её образования поведение монопольных рыночных структур при различных факторах внешней среды. Выяснить условия и последстви
17885. ПРАКТИКА СПРОСА И ПРЕДЛОЖЕНИЯ НА РЫНКЕ ТРУДА 25.15 KB
  НАЗВАНИЕ ПРАКТИЧЕСКОГО ЗАНЯТИЯ: ПРАКТИКА СПРОСА И ПРЕДЛОЖЕНИЯ НА РЫНКЕ ТРУДА ЦЕЛЬ ЗАНЯТИЯ: Выяснить особенности спроса и предложения труда обозначить факторы определяющие изменения спроса и предложения труда. Обосновать правило найма рабочей силы и правило
17886. ПРАКТИКА ОБЩЕГО ЭКОНОМИЧЕСКОГО РАВНОВЕСИЯ 31.22 KB
  НАЗВАНИЕ ПРАКТИЧЕСКОГО ЗАНЯТИЯ: ПРАКТИКА ОБЩЕГО ЭКОНОМИЧЕСКОГО РАВНОВЕСИЯ ЦЕЛЬ ЗАНЯТИЯ: Определить условия общего и частичного равновесия ФОРМУЛИРОВАНИЕ ОСНОВНОЙ ИДЕИ ЗАНЯТИЯ 1. Уравнения потребительского спроса. Спрос отдельного потребителя на каждо
17887. ЭКОНОМИЧЕСКАЯ РОЛЬ ГОСУДАРСТВА НА ПРАКТИКЕ 99.48 KB
  НАЗВАНИЕ ПРАКТИЧЕСКОГО ЗАНЯТИЯ: ЭКОНОМИЧЕСКАЯ РОЛЬ ГОСУДАРСТВА НА ПРАКТИКЕ ЦЕЛЬ ЗАНЯТИЯ: Определить ключевые понятия в экономической роли государства на практике выявить основные причины отказа рынка или фиаско рынка познакомиться с различными вариантами ...
17888. Микроэкономика. Методические указания к самостоятельному изучению дисциплины 216.5 KB
  Методические указания к самостоятельному изучению дисциплины Микроэкономика для студентов обучающихся по направлениям 0305 Экономика и предпринимательство и Менеджмент всех форм обучения Методические указания к самостоятельному изучению дисциплины ...
17889. СВІТОВЕ ГОСПОДАРСТВО ЯК ЦІЛІСНА СИСТЕМА. ЗАГАЛЬНОЦИВІЛІЗАЦІЙНІ ЕКОНОМІЧНІ ОЗНАКИ ТА КРИТЕРІЇ 277 KB
  Тема 1 . СВІТОВЕ ГОСПОДАРСТВО ЯК ЦІЛІСНА СИСТЕМА. ЗАГАЛЬНОЦИВІЛІЗАЦІЙНІ ЕКОНОМІЧНІ ОЗНАКИ ТА КРИТЕРІЇ ПЛАН Поняття світового господарства 2. Загальне поняття €œміжнародна економіка€ 3. Загальноцивілізаційні економічні ознаки та критерії. Пре...
17890. ВИДІЛЕННЯ ПІДСИСТЕМ СВІТОВОГО ГОСПОДАРСТВА ТА ПОКАЗНИКИ ЙОГО РОЗВИТКУ 204 KB
  Тема 2 . ВИДІЛЕННЯ ПІДСИСТЕМ СВІТОВОГО ГОСПОДАРСТВА ТА ПОКАЗНИКИ ЙОГО РОЗВИТКУ ПЛАН Критерії виділення підсистем світового господарства. Основні показники розвитку світового господарства. Групи країн у світовій економіці. Класифікації країн за метод...
17891. ГЛОБАЛЬНА ЕКОНОМІЧНА СИСТЕМА: КОНЦЕПЦІЇ ТА МОДЕЛІ РОЗВИТКУ 101 KB
  Тема 3 . ГЛОБАЛЬНА ЕКОНОМІЧНА СИСТЕМА: КОНЦЕПЦІЇ ТА МОДЕЛІ РОЗВИТКУ ПЛАН 1. Концепції глобальної економічної системи 2. Головні елементи міжнародної економічної системи 3. Моделі економічного розвитку 1. Концепції глобальної економічної системи Світов...