28184

Распространение света в изотропных средах. Отражение и преломление света на границе между диэлектриками. Основные законы геометрической оптики. Формулы Френеля

Доклад

Физика

При этом падающий отражённый и преломленный лучи лежат в одной плоскости с перпендикуляром восстановленным к границе раздела сред в точке падения О. Углы соответственно углы падения отражения преломления волн. Амплитуду падающей волны разложим на составляющие Ер параллельную плоскости падения и Еs перпендикулярную плоскости падения. Для составляющих вектора Е перпендикулярных плоскости падения рисунок 3 выполняются условия в которых индексы при Е и p при Н опущены: .

Русский

2013-08-20

146 KB

56 чел.

47. Распространение света в изотропных средах. Отражение и преломление света на границе между диэлектриками. Основные законы геометрической оптики. Формулы Френеля

В однородной изотропной среде свет распространяется прямолинейно, в любом направлении с одинаковой скоростью.  При этом форма волнового фронта не изменяется –  плоская волна остается плоской, сферическая волна – сферической и т.п. Векторы напряжённостей электрического  и магнитного поля волны образуют правую тройку векторов с вектором Умова – Пойнтинга , модуль которого характеризует плотность энергии волны.

На границе раздела двух однородных изотропных сред происходит отражение и преломление световых пучков, направление распространения волн изменяется в соответствии с законами отражения и преломления (рисунок 1).

Названные законы можно получить, воспользовавшись условием непрерывности тангенциальных составляющих напряженности электрического поля волны на границе раздела сред: . Пользуясь этим условием для плоской волны, наклонно падающей в точке  О на границу раздела сред, несложно доказать, что:

  1.  частота излучения при отражении и преломлении на границе раздела сред не изменяется, ;
  2.  свет отражается под таким же углом, под каким он падает на границу раздела, закон отражения света;
  3.  выполняется закон преломления света  (закон Снеллиуса).

При этом падающий, отражённый и преломленный лучи лежат в одной плоскости с перпендикуляром, восстановленным к границе раздела сред в точке падения О.

Законы  отражения и преломления являются основой геометрической оптики. Они получаются в электромагнитной теории без каких-либо специальных предположений, как следствие граничных условий для уравнений Максвелла и выполняются в любом диапазоне частот.

В 1823 г. французским физиком О.Ж. Френелем на основе представлений об упругих поперечных колебаниях эфира получены формулы, в которых определены отношения амплитуды, фазы и состояния поляризации отраженной и преломленной волн, возникающих при прохождении света через границу раздела двух прозрачных диэлектриков, к соответствующим характеристикам падающей световой волны. Такие же соотношения получаются в результате строгого вывода на основе электромагнитной теории, при решении уравнений Максвелла.

Пусть плоская световая волна падает на границу раздела двух сред с показателями преломления  и . Углы , ,  - соответственно углы падения, отражения, преломления волн. При этом всегда  и .

Амплитуду падающей волны  разложим на составляющие Ер, параллельную плоскости падения, и Еs, перпендикулярную плоскости падения. Аналогично разложим на составляющие Е1p и E1s,  E2p и E2s амплитуды E1 и E2 отраженной и преломленной волн. Обозначения , ,  на рисунке 2 соответствуют векторам Умова – Пойнтинга падающей, отраженной и преломлённой волн; для показателей преломления сред выполнено условие , поэтому .

Направления векторов для какого-то момента времени показаны на рисунке 2. Составляющие векторов напряженности магнитного поля направлены перпендикулярно плоскости чертежа по направлению к читателю. На основании граничных условий имеем:

;  .

При этом вторым индексом, одинаковым для всех волн, отмечены амплитудные значения проекций векторов; индексы p (при Е) и  (при Н) в уравнениях опущены.

Так как , , , , получим:

, .

После несложных преобразований этих уравнений найдем первую пару формул Френеля:

;     .

Для составляющих вектора Е, перпендикулярных плоскости падения (рисунок 3), выполняются условия, в которых индексы (при Е) и  p (при Н) опущены:

,  .

После преобразований можно получить выражения для составляющих вектора напряженности электрического поля для отраженной и преломленной волны, перпендикулярных плоскости падения (вторая пара формул Френеля):

;      

.

Анализируя формулы Френеля, легко показать, что преломленная волна имеет  одинаковую фазу с падающей волной, а отраженная волна имеет фазу, отличающуюся на  от фазы падающей волны (потеря полуволны при отражении), если отражение происходит от оптически более плотной среды (n2 > n1).

В частном случае, когда отраженный и преломленный лучи перпендикулярны друг другу, из уравнений Френеля следует закон Брюстера: . Соответствующий угол падения называют углом Брюстера: . При переходе из воздуха в стекло с показателем преломления п = 1,5 угол Брюстера близок к 570.

Энергетические коэффициенты отражения и пропускания определятся уравнениями

, ,

их явные выражения легко получить после подстановки соответствующих формул. При этом нужно учесть, что ортогонально поляризованные волны не интерферируют, поэтому коэффициенты отражения для параллельных и перпендикулярных плоскости падения составляющих аддитивно складываются.

Из формул Френеля следует соотношение:

.

При нормальном падении света на границу раздела сред  теряется различие между параллельной и перпендикулярной плоскости падения составляющими, так как теряет смысл само понятие о плоскости падения. При этом  и коэффициент отражения

,  коэффициент прохождения .

Несложно показать, что при падении света под углом Брюстера от границы раздела отражается только составляющая вектора Еs, а параллельная плоскости падения составляющая обращается в нуль. Таким образом, при падении пучка под углом Брюстера отраженный свет полностью поляризован в плоскости, перпендикулярной плоскости падения.

На основе формул Френеля можно показать, что при углах падения, бóльших предельного угла , имеет место полное отражение света от границы раздела со средой, оптически менее плотной среды, из которой падает свет.

Формулы Френеля не выполняются при отражении от металлов. Их аналоги могут быть получены после введения понятия о комплексном показателе преломления среды.

Условие применимости формул Френеля – независимость показателя преломления среды от амплитуды вектора электрической напряженности световой волны. Это условие не выполняется для потоков большой мощности, излучаемых лазерами. В таких ситуациях необходимо использовать формулы, которые получают в нелинейной оптике.

φ1

φ2

Рисунок 1 – Отражение и преломление света

на границе раздела оптически изотропных сред

n1

n2

O

Нs

Нs

φ2

φ1

φ

Е2p

Е1p

E

n1

n2

Нs

Рисунок 2 – К выводу формул Френеля для составляющих вектора , параллельных плоскости падения волны

Рисунок 3 – К выводу формул Френеля для составляющих вектора , перпендикулярных плоскости падения волны

n2

n1

H

Е1p

Е2p

φ

φ1

φ2

Нs

Es

Нs


 

А также другие работы, которые могут Вас заинтересовать

84959. Ознайомлення з клавішами “пропуск”, “Shift”, “Caps Lock”. “Кіт-риболов” 85.03 KB
  Продовження ознайомлення з клавіатурою, зокрема з клавішами “пропуск”, “Shift”, “Caps Lock”. Закріплення знань учнів про написання великої літери. Розвиток уяви, пам’яті, уваги, логічного мислення.
84960. Ознайомлення із клавішами Enter, Esc. Програма “Кіт-риболов” 206.04 KB
  Ознайомлення із клавішами Enter Esc. Продовження ознайомлення з клавіатурою та принципами її роботи зокрема принцип роботи клавіш Enter Esc. Сьогодні ми познайомимося з клавішами Enter і Esc. Enter дуже важлива клавіша.
84961. Ознайомлення з клавішами-стрілочками, BS, Delete 144.71 KB
  Ознайомлення учнів з клавішами - стрілочками (вліво, вправо, вгору, вниз), BS, Delete. Закріплення навичок роботи з клавішами Enter, ESC. Розвиток логічного мислення. Виховання акуратності, охайності при роботі з комп’ютером...
84962. Створення вітальної листівки з використанням графічного редактора Paint і тексту 59.76 KB
  Створення вітальної листівки з використанням графічного редактора Pint і тексту Мета. Формування основних навичок роботи з компонентами графічного редактора Pint. ПК із завантаженим графічним редактором Pint роздатковий матеріал Хід уроку І. Допоможе нам працювати графічний редактор PINT.
84963. Правила дорожнього руху. Комп’ютерна підтримка уроку основи здоров’я 166.04 KB
  Компютерна підтримка уроку основи здоровя. Виховання спостережливості уваги інтересу до компютера. Повторення правил безпечної поведінки в компютерному класі. На початку уроку ми повторили правила роботи з компютером.
84964. Комп’ютерна підтримка української мови. Звуки голосні й приголосні. Програма “Незвичайний поїзд” 437.9 KB
  Формування вміння працювати з теоретичним матеріалом підручника, знаходити в ньому потрібну інформацію. Розвиток мовленнєвих та творчих здібностей, логічного мислення, уваги, пам’яті. Виховання культури мовлення.
84965. Комп’ютерна підтримка української мови. Ненаголошені е та и. Програма “Незнайка на містку” 175.63 KB
  Удосконалення вмінь працювати мишкою у програмі “Незнайко на містку”. Закріплення правил правопису ненаголошених е, и в корені слів, Розвиток вмінь практично застосовувати набуті знання; Підвищення інтересу до роботи з комп’ютером.
84966. Комп’ютерна підтримка української та англійської мови. Програма “Ведмедик-поліглот” 293.5 KB
  Удосконалення знань слів української та англійської мови, уміння їх перекладати. Розвиток просторової уяви, логічного мислення, уваги. Продовження формування умінь і навичок роботи з комп’ютером.
84967. Техніка безпеки при роботі з комп’ютером 94.4 KB
  Техніка безпеки при роботі з компютером Мета. Навчити учнів поводитися в компютерному класі дотримуючись усіх правил техніки безпеки ТБ. Виховувати культуру поведінки в компютерному класі толерантність при роботі в парах культуру мовлення і бережливе ставлення до держмайна. Хто знає в який клас ми прийшли Чи доводилось тобі працювати з компютером А чи знаєш ти що таке компютер Робота з тлумачним словником.