28187

Интерференционные схемы с делением волн по амплитуде. Интерференция в тонких пленках. Полосы равной толщины и полосы равного наклона. Кольца Ньютона. Применение интерференции света

Доклад

Физика

Пусть на тонкую прозрачную пластинку постоянной толщины рисунок 1 из вакуума падает волна с плоским фронтом ей соответствует пучок параллельных лучей сформированная с помощью точечного источника и линзы в фокусе которой источник находится. Так как условия распространения всех лучей падающих на пластинку в этом опыте одинаковы то для лучей и а также других пар лучей одинаковых с ними по происхождению оптическая разность хода будет одинаковой: 1 где n – показатель преломления материала...

Русский

2013-08-20

134 KB

12 чел.

50. Интерференционные схемы с делением волн по амплитуде. Интерференция в тонких пленках. Полосы равной толщины и полосы равного наклона. Кольца Ньютона. Применение  интерференции света.

Для получения интерференционных картин, доступных для наблюдения и анализа, в оптике пользуются искусственным приемом.   Сначала создают когерентные источники посредством искусственного разделения световых импульсов по волновому фронту или по амплитуде на две или более частей, затем обеспечивают последующее наложение этих частей после прохождения ими неодинаковых путей. При этом должны быть обеспечены условия временнóй и пространственной когерентности.

Рассмотрим интерференционные схемы с делением волн по амплитуде.

Пусть на тонкую прозрачную пластинку постоянной  толщины  (рисунок 1) из вакуума падает волна с плоским фронтом (ей соответствует пучок параллельных лучей), сформированная с помощью точечного источника  и линзы , в фокусе которой источник находится.

Лучи , отраженный в точке С от верхней поверхности пластинки, и , вышедший из неё после преломления луча 2 в точке А, отражения его в точке В и преломления в точке С, параллельны друг другу. В этом нетрудно убедиться, воспользовавшись законами отражения и преломления света. Опустим перпендикуляр из точки А на луч 2 и обозначим точку пересечения D. Так как условия распространения всех лучей, падающих на пластинку, в этом опыте одинаковы, то для лучей  и , а также других пар лучей, одинаковых с ними по происхождению, оптическая разность хода будет одинаковой:

,                                 (1)

где n – показатель преломления материала пластинки.  При использовании монохроматического источника пластинка будет казаться окрашенной или темной, в зависимости от того, выполнится для интерферирующих волн соответственно условие максимума

,  m = 0, ±1, ±2, …                                       (2)

или условие минимума

,  m = 0, ±1, ±2, …  .                             (3)                                       

Интерференционная картина, возникающая в опыте, соответствующем рисунку 1, локализована в бесконечности, так как лучи  и  параллельны друг другу.

Результат интерференции света в тонкой плоскопараллельной плёнке определяется по формулам:

При наблюдении

Усиление света (максимум)

Ослабление света (минимум)

в отраженном свете

в проходящем свете

В формулах h – толщина пластинки, n – показатель преломления материала, из которого она изготовлена, β – угол преломления луча в пластинке, m –порядок интерференции, λ – длина волны излучения. При наблюдении в отраженном свете дополнительная разность хода, равная λ/2, обусловлена потерей полуволны при отражении одного из световых пучков от оптически более плотной среды.

Располагая на пути лучей  и  и им аналогичных собирающую линзу (на рисунке 1 не показана), можно получить на экране, удаленном от неё на фокусное расстояние, интерференционные полосы, каждая из которых соответствует лучам, упавшим на пластинку под одним и тем же углом (разным для разных полос). Поэтому интерференционные полосы в данном случае называют полосами равного наклона.

Если линзу  уберём из схемы, изображённой на рисунке 1,  то свет от источника упадёт на пластинку расходящимся пучком (рисунок 2). Теперь интерферирующие лучи не параллельны друг другу, а расходятся из точки С. Оптическая разность хода лучей и в этом случае рассчитывается по формуле (1). Однако положение  точки  теперь определяется условием .

Интерференционная картина имеет вид концентрических светлых и темных колец, центры которых совпадают с основанием перпендикуляра, опущенного из источника на верхнюю грань пластинки, на которой картина и локализована. На одном кольце будут лежать точки, в которых из пластинки выходят лучи, прошедшие внутри неё одинаковые расстояния . В силу этого обстоятельства систему полос, наблюдаемых в рассматриваемой схеме, называют полосами равной толщины.

Полосы равной толщины можно получить и при освещении параллельным пучком лучей клина с малым углом , изготовленного из материала с показателем преломления . Разность хода лучей  и , происхождение которых ясно на рисунке 3, также определяется по формуле (1).

Интерференционные полосы параллельны ребру клина, локализованы на его поверхности, одинаковы по ширине для монохроматического света. При падении света нормально к поверхности клина разность хода волн, интерферирующих в точке С, равна , где  - дополнительная разность хода, обусловленная отражением луча 2 от оптически более плотной среды. Ширина интерференционной полосы определяется из условий и  и равна .

Разновидностью полос равной толщины являются кольца Ньютона, локализованные на поверхности воздушного клина с переменным углом наклона,  который образуется, если плосковыпуклую стеклянную линзу поставить на стеклянную пластинку выпуклой поверхностью вниз  (рисунок 4). Радиус кривизны R выпуклой поверхности должен быть большим. Кольца Ньютона составляют систему концентрических тёмных и светлых колец, сгущающихся в направлении от центра к краю интерференционной картины. Центральное пятно тёмное (интерферируют волны, отличающиеся по фазе на π радиан).

Радиусы колец Ньютона rk определяют по формулам:

При наблюдении

Светлые кольца (максимум)

Темные кольца (минимум)

в отраженном свете

в проходящем свете

Интерференционные явления нашли многочисленные практические применения.  Возможность интерференционного гашения волн, отраженных от верхней поверхности пластинки, волнами, отраженными от её нижней поверхности (рисунок 5), используется в целях просветления оптических деталей (просветления оптики), например, объективов фотоаппаратов. Энергия интерферирующих отраженных волн «перекачивается» в волны, прошедшие через систему. Эффект просветления реализуется, если;

- показатель преломления плёнки удовлетворяет условию ;

- и толщина пленки такова, что для волн, отражённых от верхней и нижней границ плёнки, выполняется условие интерференционного минимума: . (Знак плюс выбирают при потере полуволны на нижней границе, знак минус – при потере λ/2  на верхней границе).

 Интерференционные методы широко применяются для прецизионного измерения расстояний, контроля качества поверхностей оптических деталей, измерения длины волны излучения, показателей преломления и дисперсии показателя преломления оптических сред, концентрации растворов, для анализа спектрального состава излучения различных источников и для астрономических измерений. Для этих целей используются интерферометры разных типов.


1

2

А

С

D

h

n

β

i

i

Рисунок 5 – Ход лучей в условиях просветления оптической детали

Отражённое излучение

Прошедшее излучение

Просветляемая деталь

n3

n1

n2

n1

Просветляющая плёнка       d

d

А

D

B

C

n

h

Рисунок 2 – Ход лучей при образовании полос равного наклона

при освещении пластинки расходящимся пучком

S

1

2

А

D

B

C

1

2

n

α

Рисунок 3 – Схема образования полос равной толщины в клине

d

Δd

А

В

С

1

2

R

rk

n

Рисунок 4 – Схема образования колец Ньютона

L1

Рисунок 1 – Интерференция в тонкой плёнке при освещении её плоской волной

В


 

А также другие работы, которые могут Вас заинтересовать

75875. Структура гіпертексту. Поняття про гіперлінки, вузли, маршрут 30.22 KB
  Феномен гипертекста можно обсуждать с нескольких точек зрения. Гипертекст автора в традиционном понимании не имеет у него множество авторов причем для постоянно изменяющегося гипертекста авторский коллектив также постоянно меняется. Различия текста и гипертекста: конечность законченность традиционного текста vs. бесконечность незаконченность открытость гипертекста; линейность текста vs.
75876. Лингвистические фреймы 26.66 KB
  Лингвистические фреймы. Термин фрейм получил распространение в лингвистике в 70е годы XX века и с тех пор обрел довольно широкое и устойчивое применение. Несмотря на то что термин фрейм используется в различных областях научной деятельности значение его практически не меняется в зависимости от контекста. Первоначально термин фрейм от англ.
75877. Методи викладання іноземної мови. Комунікативно-спрямований підхід 36.5 KB
  В період післявоєнних десятиліть формується характерна тенденція до і посилення комунікативної спрямованості навчального процесу — його наближення до реального процесу спілкування. Розробкою комунікативного методу в тій чи іншій мірі займалось багато наукових колективів та методистів у різних країнах
75878. Методи викладання іноземної мови. Комунікативно спрямований підхід 32.22 KB
  Перекладні методи: Граматикоперекладний навчання граматики у ході читання тексту та його дослівного перекладу. Мета навчання спілкування. Переважає усне мовлення на основі комунікативних ситуацій навчання фонетики лексики. Переваги:розробка методики навчання усного мовлення системи фонетичних вправ використання різних безперекладних способів семантизації лексики.
75879. Проблеми перекладу в аспекті семантики. Види відношень одиниць вихідної мови та мови перекладу (повна та часткова відповідальність, пересічення, включення) 54.5 KB
  В первую очередь, понятие уровня перевода связано с распространенным в теории перевода понятиями “эквивалентного” (иначе - “адекватного”), “буквального” и вольного перевода. Вообще говоря, понятие переводческой эквивалентности, также как и буквализма и переводческой вольности, не сводиться видимо
75880. Структурні та мовні особливості словникових статей словників-тезаурусів, двомовних, асоціативних, частотних словників 48 KB
  Идеографические словари. Словари-тезаурусы сделанные по конкретным проблемным областям например по электронике геологии торговле политике широко используются в системах автоматического поиска. Переводные словари. Франкорусские словари представлены в частности словарем К.
75881. Структурні та мовні особливості словникових статей словників історичних та етимологічних, словників мовних форм (орфографічних, орфоепічних, морфемних), словників мовленнєвого використання, ономастиконів 47 KB
  Щербой в статье Опыт общей теории лексикографии: Историческим в полном смысле этого термина был бы такой словарь который давал бы историю всех слов на протяжении определенного отрезка времени начиная с той или иной определенной даты или эпохи причем указывалось бы не только возникновение новых слов и новых значений но и их отмирание а также их видоизменение. С 1984 издается Словарь русского языка XVIII в. К числу наиболее полных словарей такого типа для русского языка принадлежит четырехтомный Этимологический словарь русского языка М. Не...
75883. Проблеми створення комп’ютерних систем розпізнавання усного мовлення. Методи виділення й упізнавання елементів мови при обробці усного мовлення 29.83 KB
  Задача распознавания речи состоит в автоматическом восстановлении текста произносимых человеком слов фраз или предложений на естественном языке. Только в последние десятилетия компьютерная техника достигла такого уровня когда стала осмысленной задача распознавания слитной или даже спонтанной устной речи. На этом этапе выяснилось что для решения задачи распознавания речи недостаточно уметь распознавать отдельные звуки и слова команды с надежностью сравнимой с надежностью распознавания отдельных команд человеком. Поэтому задачу...