28546

О возможности реализации абсолютной секретности в постановке Шеннона

Доклад

Информатика, кибернетика и программирование

А это в свою очередь может повлиять на выбор противником своих действий и таким образом совершенной секретности не получится. Следовательно приведенное определение неизбежным образом следует из нашего интуитивного представления о совершенной секретности. Для совершенной секретности системы величины PEM и PM должны быть равны для всех E и M.

Русский

2013-08-20

58.5 KB

1 чел.

О возможности реализации абсолютной секретности в постановке Шеннона

 Необходимое и достаточное условие для свершенной секретности состоит в том, что

 PM(E) = P(E),

для всех М и Е, т.е. РМ(Е) не должно зависеть от М,

Где:   PM(E) –  условная вероятность криптограмм Е при условии, что выбрано сообщение М, т.е. сумма вероятностей всех тех ключей, которые переводят сообщение М в криптограмму Е;

 P(E) – вероятность получения криптограммы Е.

 Доказательство этой теоремы приводит к получению следующих условий:

Для любого сообщения М должен существовать по крайней мере один ключ, отображающий данное М в любое из Е, поэтому число различных ключей не меньше числа сообщений М .

Естественным является построение совершенно секретной системы, в которой число криптограмм Е равно числу сообщений М, а также числу ключей, характеризующейся следующими основными свойствами:

каждое М связывается с каждым Е только одной линией в матрице переходов из М в Е (рис. 1);

все ключи равновероятны .  

10. Совершенная секретность (из архива)

Предположим, что имеется конечное число возможных сообщений M1,…,Mn с

априорными вероятностями P(M1),…,P(Mn) и что эти сообщения преобразуются в

возможные криптограммы E1,…,Em, так что E = TiM.

После того как шифровальщик противника перехватил некоторую криптограмму E,

он может вычислить, по крайней мере в принципе, апостериорные вероятности различных

сообщений PE(M). Естественно определить совершенную секретность с помощью следу-

ющего условия: для всех E апостериорные вероятности равны априорным вероятностям

независимо от величины этих последних. В этом случае перехват сообщения не дает шифро-

вальщику противника никакой информации6. Теперь он не может корректировать никакие

свои действия в зависимости от информации, содержащейся в криптограмме, так как все

вероятности, относящиеся к содержанию криптограммы, не изменяются. С другой стороны,

если это условие равенства вероятностей не выполнено, то имеются такие случаи, в которых

для определенного ключа и определенных выборов сообщений апостериорные вероятности

противника отличаются от априорных. А это в свою очередь может повлиять на выбор

противником своих действий и, таким образом, совершенной секретности не получится.

Следовательно, приведенное определение неизбежным образом следует из нашего

интуитивного представления о совершенной секретности.

Необходимое и достаточное условие для того, чтобы система была совершенно

секретной, можно записать в следующем виде. По теореме Байеса

где

P(M) – априорная вероятность сообщения M;

PM(E) – условная вероятность криптограммы E при условии, что выбрано сообщение M,

т.е. сумма вероятностей всех тех ключей, которые переводят сообщение M в

криптограмму E;

P(E) – вероятность получения криптограммы E;

PE(M) – апостериорная вероятность сообщения M при условии, что перехвачена

криптограмма E.

Для совершенной секретности системы величины PE(M) и P(M) должны быть

равны для всех E и M. Следовательно, должно быть выполнено одно из равенств: или

P(M) = 0 [это решение должно быть отброшено, так как требуется, чтобы равенство

осуществлялось при любых значениях P(M)], или же

PM(E) = P(E)

для любых M и E. Наоборот, если PM(E) = P(E), то

PE(M) = P(M),

и система совершенно секретна. Таким образом, можно сформулировать следующее:

Теорема 6. Необходимое и достаточное условие для совершенной секретности состоит в

том, что

Основы теории К. Шеннона

Шеннон рассмотрел модель, в которой источник сообщений порождает открытый текст X. Источник ключей генерирует ключ Z. Шифратор преобразовывает открытый текст X с помощью ключа Я в шифртекст Y:
     Y=Tz(X)

Дешифратор, получив зашифрованное сообщение Y, выполняет обратную операцию:
     X=Tz(-1)(Y)

Модель секретной системы К. Шеннона приведена на рис.1.


pис.1. Модель К.Шеннона.

Задачей криптоаналитика противника является получение открытого текста и ключа на основе анализа шифртекста. Шеннон рассмотрел вопросы теоретической и практической секретности.

Для определения теоретической секретности Шеннон сформулировал следующие вопросы.

  1.  Насколько устойчива система, если криптоаналитик противника не ограничен временем и обладает всеми необходимыми средствами для анализа криптограмм?
  2.  Имеет ли криптограмма единственное решение?
  3.  Какой объем шифртекста необходимо перехватить криптоаналитику, чтобы решение стало единственным?

Для ответа на эти вопросы Шеннон ввел понятие совершенной секретности с помощью следующего условия: для всех Y апостериорные вероятности равны априорным вероятностям, то есть перехват зашифрованного сообщения не дает криптоаналитику противника никакой информации. По теореме Бейеса
     Py(X)=P(X)Px(Y)/P(Y)
где P(X) - априорная вероятность сообщения Х;
Рx(Y)- условная вероятность криптограммы Y при условии, что выбрано сообщение X, то есть сумма вероятностей всех тех ключей, которые переводят сообщение X в криптограмму Y;
P(Y) - вероятность получения криптограммы Y;
Рy(Х)- апостериорная вероятность сообщения X при условии, что перехвачена криптограмма Y.

Для совершенной секретности величины Рy(Х) и Р(Х) должны быть равны для любых X и Y.

Теорема 1. Необходимое и достаточное условие для совершенной секретности состоит в том, что Рy(X)=P(X) для всех X и Y, то есть Px(Y) не должно зависеть от X.

Секретная система включает в себя два статистических выбора: выбор сообщения и выбор ключа

Методы кpиптогpафического закpытия данных

Шифpование 

Кодиpование 

Дpугие виды 

замена (подстановка)

смысловое

сжатие

перестановка

символьное

расширение

аналитические преобразования

комбинированное

рассечение- разнесение

комбинированные методы

.

.


 

А также другие работы, которые могут Вас заинтересовать

40020. База данных «Магазин музыкальных дисков» 669 KB
  Описание исходных данных и предметной области.Разработка базы данных на базе СУБД CCESS 9 2.Обработка данных с помощью ТП EXCEL 3. Представление имеющихся в данных тенденций соотношений в виде диаграммгистограмм круговых диаграмм графиков 19 Заключение 31 Список использованных источников 32 Введение Базы данных БД составляют в настоящее время основу программного обеспечения информационных процессов входящих практически во все сферы человеческой деятельности.
40021. База данных «Бюро проката автомобилей» 2.13 MB
  Описание исходных данных и предметной области. Является основным связующим звеном всех данных других таблиц она отражает какой автомобиль был взят в аренду на какой срок какой был оставлен залог. Ниже приведена Схема данных Бюро проката автомобилей: 1. Microsoft ccess Microsoft ccess создана на основе реляционной модели базы данных и предназначена для создания быстрых эффективных баз данных применяемых в быту и бизнесе.
40022. Состав и структура автоматизированной информационной системы 32 KB
  Состав АИС Кадры Цель функционирования Объект АИС Предмет АИС Обеспечивающие подсистемы Таблица 2. Задачи решаемые АИС Кадры Первичный документ Формулировка задачи Тип задачи Функциональная подсистема Примечание Контрольные вопросы: 1.Что понимают под целью задачами АИС 2.
40023. Анализ данных в MS Excel 573 KB
  Подбор параметра Часто мы сталкиваемся с необходимостью решить то или иное уравнение например определить процентную ставку при которой предлагаемая сделка выгодна или определить скорость оборота капиталовложений. Подбор параметра как раз и является тем средством Excel которое позволяет очень просто решать эти задачи. Если значение функции может быть изменено только с помощью изменения значения одного параметра сама функция возможно зависит и от других параметров но мы не хотим или не можем изменять их значения то тогда отыскать...
40024. Имитационное моделирование инвестиционных рисков 138.5 KB
  В процессе предварительного анализа экспертами были выявлены три ключевых параметра проекта: объем выпуска Q цена за штуку P переменные затраты V. Прочие параметры: постоянные затраты при производстве F амортизация налог на прибыль T норма дисконта R срок проекта n начальные инвестиции I0 описывающие проект считаются постоянными величинами табл. Ключевые параметры проекта по производству продукта А Показатели Сценарий минимум максимум Объем выпуска Q 150 300 Цена за штуку P 40 55 Переменные затраты V 25 35...
40025. ИНФОРМАЦИОННЫЕ СИСТЕМЫ В ЭКОНОМИКЕ 1.13 MB
  Crmсистемы 5. На микропроцессорах и интегральных схемах создаются компьютеры компьютерные сети системы передачи данных. На этом в частности основаны многие современные системы шифрования данных и механизмы электронной подписи.
40026. Доходность вексельной сделки 2.11 MB
  Пример создания проекта Цель проекта: разработать компьютерную программу состоящую из двух модулей. Создание проекта и установка параметров Будем считать что аналогов создаваемому проекту в мире нет и мы начинаем его строить с нуля. Убедиться что параметры проекта установленные по умолчанию и представленные в окне Сведения о проекте нас устраивают; если это действительно так щелкнуть на кнопке Отменить чтобы закрыть окно без изменений; в противном случае после внесения изменений требуется щелкнуть на кнопке ОК. Для однообразия...
40027. Создание локальных и открытых баз данных 11.29 MB
  ПЕРМЬ 2006 Введение Для выполнения практических заданий студент должен: иметь представление о принципах построения баз данных этапах создания и возможностях эксплуатации; знать основные свойства системы управления реляционными базами данных MS ccess; уметь использовать реляционные базы данных в локальных и глобальных сетях. Разработка базы данных разбивается на следующие основные этапы: 1. Определение цели создания базы данных На первом этапе разработки базы данных необходимо определить ее назначение и как она будет использоваться.
40028. База Данных «Прием в поликлинику» 3.31 MB
  Она содержит: Данные о каждой приеме: дата приема время приема специалист пациент предварительный диагноз лечение; Данные о специалистах: ФИО специализация стаж работы № договора № кабинета; Данные о пациенте: ФИО дата рождения пол адрес номер мед.[№_кабинета] FROM Специалист ORDER BY [Фамилия_И_О_специалиста]; RowSourceType: Таблица или запрос SourceField: Специалист SourceTble: Прием Пациент Текстовый 5 RowSource: SELECT [Пациент].[Код_пациента] [Пациент].