28546

О возможности реализации абсолютной секретности в постановке Шеннона

Доклад

Информатика, кибернетика и программирование

А это в свою очередь может повлиять на выбор противником своих действий и таким образом совершенной секретности не получится. Следовательно приведенное определение неизбежным образом следует из нашего интуитивного представления о совершенной секретности. Для совершенной секретности системы величины PEM и PM должны быть равны для всех E и M.

Русский

2013-08-20

58.5 KB

1 чел.

О возможности реализации абсолютной секретности в постановке Шеннона

 Необходимое и достаточное условие для свершенной секретности состоит в том, что

 PM(E) = P(E),

для всех М и Е, т.е. РМ(Е) не должно зависеть от М,

Где:   PM(E) –  условная вероятность криптограмм Е при условии, что выбрано сообщение М, т.е. сумма вероятностей всех тех ключей, которые переводят сообщение М в криптограмму Е;

 P(E) – вероятность получения криптограммы Е.

 Доказательство этой теоремы приводит к получению следующих условий:

Для любого сообщения М должен существовать по крайней мере один ключ, отображающий данное М в любое из Е, поэтому число различных ключей не меньше числа сообщений М .

Естественным является построение совершенно секретной системы, в которой число криптограмм Е равно числу сообщений М, а также числу ключей, характеризующейся следующими основными свойствами:

каждое М связывается с каждым Е только одной линией в матрице переходов из М в Е (рис. 1);

все ключи равновероятны .  

10. Совершенная секретность (из архива)

Предположим, что имеется конечное число возможных сообщений M1,…,Mn с

априорными вероятностями P(M1),…,P(Mn) и что эти сообщения преобразуются в

возможные криптограммы E1,…,Em, так что E = TiM.

После того как шифровальщик противника перехватил некоторую криптограмму E,

он может вычислить, по крайней мере в принципе, апостериорные вероятности различных

сообщений PE(M). Естественно определить совершенную секретность с помощью следу-

ющего условия: для всех E апостериорные вероятности равны априорным вероятностям

независимо от величины этих последних. В этом случае перехват сообщения не дает шифро-

вальщику противника никакой информации6. Теперь он не может корректировать никакие

свои действия в зависимости от информации, содержащейся в криптограмме, так как все

вероятности, относящиеся к содержанию криптограммы, не изменяются. С другой стороны,

если это условие равенства вероятностей не выполнено, то имеются такие случаи, в которых

для определенного ключа и определенных выборов сообщений апостериорные вероятности

противника отличаются от априорных. А это в свою очередь может повлиять на выбор

противником своих действий и, таким образом, совершенной секретности не получится.

Следовательно, приведенное определение неизбежным образом следует из нашего

интуитивного представления о совершенной секретности.

Необходимое и достаточное условие для того, чтобы система была совершенно

секретной, можно записать в следующем виде. По теореме Байеса

где

P(M) – априорная вероятность сообщения M;

PM(E) – условная вероятность криптограммы E при условии, что выбрано сообщение M,

т.е. сумма вероятностей всех тех ключей, которые переводят сообщение M в

криптограмму E;

P(E) – вероятность получения криптограммы E;

PE(M) – апостериорная вероятность сообщения M при условии, что перехвачена

криптограмма E.

Для совершенной секретности системы величины PE(M) и P(M) должны быть

равны для всех E и M. Следовательно, должно быть выполнено одно из равенств: или

P(M) = 0 [это решение должно быть отброшено, так как требуется, чтобы равенство

осуществлялось при любых значениях P(M)], или же

PM(E) = P(E)

для любых M и E. Наоборот, если PM(E) = P(E), то

PE(M) = P(M),

и система совершенно секретна. Таким образом, можно сформулировать следующее:

Теорема 6. Необходимое и достаточное условие для совершенной секретности состоит в

том, что

Основы теории К. Шеннона

Шеннон рассмотрел модель, в которой источник сообщений порождает открытый текст X. Источник ключей генерирует ключ Z. Шифратор преобразовывает открытый текст X с помощью ключа Я в шифртекст Y:
     Y=Tz(X)

Дешифратор, получив зашифрованное сообщение Y, выполняет обратную операцию:
     X=Tz(-1)(Y)

Модель секретной системы К. Шеннона приведена на рис.1.


pис.1. Модель К.Шеннона.

Задачей криптоаналитика противника является получение открытого текста и ключа на основе анализа шифртекста. Шеннон рассмотрел вопросы теоретической и практической секретности.

Для определения теоретической секретности Шеннон сформулировал следующие вопросы.

  1.  Насколько устойчива система, если криптоаналитик противника не ограничен временем и обладает всеми необходимыми средствами для анализа криптограмм?
  2.  Имеет ли криптограмма единственное решение?
  3.  Какой объем шифртекста необходимо перехватить криптоаналитику, чтобы решение стало единственным?

Для ответа на эти вопросы Шеннон ввел понятие совершенной секретности с помощью следующего условия: для всех Y апостериорные вероятности равны априорным вероятностям, то есть перехват зашифрованного сообщения не дает криптоаналитику противника никакой информации. По теореме Бейеса
     Py(X)=P(X)Px(Y)/P(Y)
где P(X) - априорная вероятность сообщения Х;
Рx(Y)- условная вероятность криптограммы Y при условии, что выбрано сообщение X, то есть сумма вероятностей всех тех ключей, которые переводят сообщение X в криптограмму Y;
P(Y) - вероятность получения криптограммы Y;
Рy(Х)- апостериорная вероятность сообщения X при условии, что перехвачена криптограмма Y.

Для совершенной секретности величины Рy(Х) и Р(Х) должны быть равны для любых X и Y.

Теорема 1. Необходимое и достаточное условие для совершенной секретности состоит в том, что Рy(X)=P(X) для всех X и Y, то есть Px(Y) не должно зависеть от X.

Секретная система включает в себя два статистических выбора: выбор сообщения и выбор ключа

Методы кpиптогpафического закpытия данных

Шифpование 

Кодиpование 

Дpугие виды 

замена (подстановка)

смысловое

сжатие

перестановка

символьное

расширение

аналитические преобразования

комбинированное

рассечение- разнесение

комбинированные методы

.

.


 

А также другие работы, которые могут Вас заинтересовать

38012. ОПРЕДЕЛЕНИЕ ЭФФЕКТИВНОСТИ И СЛОЖНОСТИ ИССЛЕДУЕМЫХ АЛГОРИТМОВ 146.5 KB
  Краткая теория Теория сложности алгоритмов Сложность алгоритма характеристика алгоритма определяющая зависимость времени выполнения программы описывающей этот алгоритм от объёма обрабатываемых данных. Формально определяется как порядок функции выражающей время работы алгоритма. Эффективность алгоритма временная сложность в самом худшем случае Ofn или просто fn.
38013. ИЗУЧЕНИЕ БЕТА –АКТИВНОСТИ 145.5 KB
  10 ЛАБОРАТОРНАЯ РАБОТА № 95 ИЗУЧЕНИЕ БЕТА АКТИВНОСТИ Цель работы Изучение явления бета распада определение длины пробега частиц и максимальной энергии частиц радиоактивного источника. Например радиоактивный изотоп водорода испускает частицы с Еmx = 18 кэВ а изотоп азота с Еmx = 166 МэВ. Типичная кривая распределения частиц по энергиям изображена на рис.1 где dN dE число частиц имеющих полную энергию от Е до Е dЕ Еmx максимальная энергия частиц данного радиоактивного вещества.
38014. Изучение нормального закона распределения случайных величин (закон Гаусса) на основе опытных данных 190 KB
  Составить интервальную таблицу частот статистический интервальный ряд распределения: а Разбить весь диапазон случайных величин на k интервалов. Строки 13 Таблицы 3 называют статистическим интервальным рядом распределения. Интервальный ряд распределения изобразить графически в виде гистограммы.
38015. ФОТОМЕТРИЧЕСКОЕ ТИТРОВАНИЕ 115.5 KB
  Если измерение ведется на определенной длине волны а прибор снабжен монохроматором процесс титрования называют спектрофотометрическим титрованием. находят по резкому перегибу полученной в ходе титрования графической зависимости оптической плотности раствора поглощения пропускания от объема добавленного титранта. При СФтитровании достигается особая селективность что связано с возможностью перехода в ходе титрования многокомпонентных систем от одной длины волны к другой.
38016. ДИФФЕРЕНЦИАЛЬНАЯ ФОТОМЕТРИЯ 176.5 KB
  Сущность метода Точность спектрофотометрического анализа можно значительно повысить если измерять не абсолютную величину оптической плотности анализируемого раствора а ее относительную величину ΔD проводя измерения раствора с концентрацией Сx против эталона уже содержащего определяемый компонент в известной концентрации Со. Однако способы настройки существенно отличаются в разных вариантах фотометрического анализа: Способ настройки 1 2 3 4 5 Концентрация раствора в кювете во время настройки на Т = 100 0 С0 С0 или Сх 0 С 0 Концентрация...
38017. Запуск и настройка СУБД VFP 6.0 133 KB
  Вызывается Ctrl F2.0 специальные и функциональные клавиши Сочетание клавиш Пункт меню Комментарий CtrlN File New Создать новый файл CtrlO File Open Открыть существующий файл CtrlS File Sve Сохранить текущий файл CtrlP File Print Печать CtrlZ Edit Undo Отменить действие CtrlR Edit Redo Повторить действие CtrlX Edit Cut Вырезать CtrlC Edit Copy Копировать CtrlV Edit Pste Вставить Ctrl Edit Select ll Выделить все CtrlF Edit Find Найти в текущем файле CtrlG Edit Find gin Найти следующий CtrlL Edit Replce CtrlD Progrm Do CtrlM...
38018. ИЗУЧЕНИЕ И ПРИМЕНЕНИЕ ФИЗИЧЕСКОГО И МАТЕМАТИЧЕСКОГО МАЯТНИКОВ 98.63 KB
  Ознакомление с физическим и математическим маятниками изучение периодического движения маятников как примера колебаний в системах с одной степенью свободы. Измерение ускорения силы тяжести с помощью математического маятника. Измерение периода колебаний физического маятника и сравнение его с расчётным значением. Измерение момента инерции тела сложной формы с помощью физического маятника.
38019. Основы электрохимии 48.5 KB
  В пробирку налить 2 мл раствора йодида калия KJ добавить 2 3 капли раствора уксусной кислоты CH3COOH затем прилить 1 мл раствора перекиси водорода H2O2. В пробирку налить 2 мл раствора перманганата калия KMnO4 добавить 2 3 капли раствора серной кислоты H2SO4 затем прилить 1 мл раствора перекиси водорода H2O2. Собрать гальванический элемент из двух металлических электродов и растворов электролитов: зачистить наждачной бумагой две металлические пластинки промыть их дистиллированной водой просушить фильтровальной...
38020. ПРЕДСТАВЛЕНИЕ И РЕАЛИЗАЦИЯ АТД «СПИСОК» 355.5 KB
  Краткая теория Реализация списка посредством массивов. При реализации списка посредством массивов используют два способа.n] of record pole1: integer; pole2: Boolen; end; vr :Spisok; Обращение к элементам такого списка будет выглядеть так. Тип для второй реализации списка посредством массивов рис 1.