28558

Новое направление в криптографии, постулаты У. Диффи и М. Хеллмана

Доклад

Информатика, кибернетика и программирование

Это означает что если А является примитивным корнем простого числа Q тогда числа A mod Q A2 mod AQ1 mod Q являются различными и состоят из целых от 1 до Q 1 с некоторыми перестановками. В этом случае для любого целого B Q и примитивного корня A простого числа Q можно найти единственную экспоненту Х такую что Y =AX mod Q где 0≤ X ≤ Q1. Экспонента X называется дискретным логарифмом или индексом Y по основанию A mod Q. Общеизвестные элементы Q Простое число A A Q и A является примитивным корнем Q Создание...

Русский

2013-08-20

23.14 KB

10 чел.

38. Новое направление в криптографии , постулаты  У. Диффи и М. Хеллмана

В середине 70-х гг. ХХ столетия произошел настоящий прорыв в современной криптографии – появление асимметричных криптосистем, которые не требовали передачи секретного ключа между сторонами. Здесь

отправной точкой принято считать работу, опубликованную Уитфилдом Диффи и Мартином Хеллманом в 1976 г. под названием "Новые направления в современной криптографии". В ней впервые сформулированы принципы обмена шифрованной информацией без обмена секретным ключом.

Независимо к идее асимметричных криптосистем подошел Ральф Меркли. Несколькими годами позже Рон Ривест, Ади Шамир и Леонард Адлеман открыли систему RSA, первую практическую асимметричную криптосистему, стойкость которой была основана на проблеме факторизации больших простых чисел. Асимметричная криптография открыла сразу несколько новых прикладных направлений, в частности системы электроннойцифровой подписи (ЭЦП) и электронных денег.

В 1980–90-е гг. появились совершенно новые направления криптографии: вероятностное шифрование, квантовая криптография и другие. Осознание их практической ценности еще впереди. Актуальной остается и задача совершенствования симметричных криптосистем. В этот же период были разработаны нефейстелевские шифры (SAFER, RC6 и др.), а в 2000 г.после открытого международного конкурса был принят новый национальный стандарт шифрования США – AES.

Постулаты У. Диффи и М. Хеллмана:

1.   Ключ  KA для шифрования сообщений входящих к абоненту А должен изготовить сам абонент А. Он же изготавливает ключ KA-1  - для расшифрования данных сообщений.

2.   Ключ KA рассылается всем желающим, отправлять сообщения абоненту A, ключ KA-1 держится в секрете.

3.   Ключ KA-1 не восстанавливается по ключу KA.

Алгоритм Диффи-Хелмана (1976) использует функцию дискретного возведения в степень и используется для открытого распределения ключей по открытому каналу связи. 

Первая публикация данного алгоритма открытого ключа появилась в статье Диффи и Хеллмана, в которой вводились основные понятия криптографии с открытым ключом и в общих чертах упоминался алгоритм обмена ключа Диффи-Хеллмана.

Цель алгоритма состоит в том, чтобы два участника могли безопасно обменяться ключом, который в дальнейшем может использоваться в каком-либо алгоритме симметричного шифрования. Сам алгоритм Диффи-Хеллмана может применяться только для обмена ключами.

Алгоритм основан на трудности вычислений дискретных логарифмов. Дискретный логарифм определяется следующим образом. Вводится понятие примитивного корня простого числа Q как числа, чьи степени создают все целые от 1 до Q – 1. Это означает, что если А является примитивным корнем простого числа Q, тогда числа

               A mod Q, A2 mod ……AQ-1 mod Q

 

являются различными и состоят из целых от 1 до Q – 1 с некоторыми перестановками. В этом случае для любого целого B < Q и примитивного корня A простого числа Q можно найти единственную экспоненту Х, такую, что

Y =AX mod Q  ,где    0≤ X ≤ (Q-1).

Экспонента X называется дискретным логарифмом, или индексом Y, по основанию A mod Q. Это обозначается как

        indA,Q(Y)

Теперь опишем алгоритм обмена ключей Диффи-Хеллмана.

Общеизвестные элементы

Q

Простое число

A

A < Q и A является примитивным корнем Q

 

Создание пары ключей пользователем I

Выбор случайного числа  X i (закрытый ключ)

Xi<Q

Вычисление числа   Y i (открытый ключ)

Yi=AXimod Q

Создание открытого ключа пользователем J

Выбор случайного числа X j (закрытый ключ)

X j< Q

Вычисление случайного числа  Y j (открытый ключ)

Yj=A Ximod Q

Создание общего секретного ключа пользователем I

  K= (Yi)Ximod Q

Создание общего секретного ключа пользователем J

K=(Yj)Xjmod Q

Предполагается, что существуют два известных всем числа: простое число Q и целое A, которое является примитивным корнем Q. Теперь предположим, что пользователи I и J хотят обменяться ключом для алгоритма симметричного шифрования. Пользователь I выбирает случайное число Xi< Q и вычисляет  Y i=AXi mod Q. Аналогично пользователь J независимо выбирает случайное целое число Xj<Q и вычисляет Y i=AXj mod Q. Каждая сторона держит значение Х в секрете и делает значение Y доступным для другой стороны. Теперь пользователь I вычисляет ключ как  K=(Yi)Xi mod Q, и пользователь J вычисляет ключ как K= (Yj)Xj mod Q. В результате по правилам модульной арифметики оба получат одно и то же значение:

K= (Yj)Xi  mod Q= (AXj mod Q)Xi mod Q = (A Xj)Xi mod Q = A XjXi mod Q =

(A Xi)Xj mod Q= ( A Xi mod Q)Xj mod Q = ( Yi)Xj mod Q.

Таким образом, две стороны обменялись секретным ключом. Так как Xi и Xj являются закрытыми, противник может получить только следующие значения: Q, A, Yi и Yj. Для вычисления ключа атакующий должен взломать дискретный логарифм, т. е. вычислить

Xj = ind a,q(Yj)

Безопасность обмена ключа в алгоритме Диффи-Хеллмана вытекает из того факта, что, хотя относительно легко вычислить экспоненты по модулю простого числа, очень трудно вычислить дискретные логарифмы. Для больших простых чисел задача считается неразрешимой.

Следует заметить, что данный алгоритм уязвим для атак типа «man-in-the-middle». Если противник может осуществить активную атаку, т.е. имеет возможность не только перехватывать сообщения, но и заменять их другими, он может перехватить открытые ключи участников Yi и Y j, создать свою пару открытого и закрытого ключа   и послать каждому из участников свой открытый ключ. После этого каждый участник вычислит ключ, который будет общим с противником, а не с другим участником. Если нет контроля целостности, то участники не смогут обнаружить подобную подмену.


 

А также другие работы, которые могут Вас заинтересовать

38120. Характеристика військового колективу 138.5 KB
  Характеристика військового колективу Час: 2 години Мета заняття: 1. РОЗПОДІЛ ЧАСУ №зп СТРУКТУРА ЗАНЯТТЯ Час хв. Перевірка готовності курсантів до заняття. Підведення підсумків і закінчення практичного заняття оголошення завдання на самостійну підготовку.
38121. Морально-психологічний вплив на війська в ході наступальних і оборонних дій 135.5 KB
  Мета заняття: ознайомити курсантів із психологічною стійкістю колективу в бою; надати курсантам знання щодо стану страху та шляхів його подолання. Обговорення другого питання: Стан страху шляхи його подолання 40 хв. Мета заняття: ознайомити курсантів із психологічною стійкістю колективу в бою; надати курсантам знання щодо стану страху та шляхів його подолання. Основна частина 80 Психологічна стійкість колективу в бою 40 Стан страху шляхи його подолання 40 3.
38122. Військове виховання 136.5 KB
  Виховання – це процес планомірного і цілеспрямованого впливу на свідомість, почуття і волю воїнів з метою формування у них наукового світогляду, навичок і звичок поведінки у відповідності до вимог моралі, підготовки їх до виконання військового обов’язку.
38123. Навчання у військах як військово-дидактичний процес 153.5 KB
  Військовопедагогічні процеси Заняття № 12: Навчання у військах як військоводидактичний процес Час: 2 години Мета заняття: 1. Обговорення першого питання: Форми організації навчання 30 хв. Обговорення другого питання: Методи навчання 30 хв. Обговорення третього питання: Контроль та оцінка військового навчання.
38125. Психологія спілкування у військовому колективі 154 KB
  Військовий підрозділ як мала соціальна група Заняття № 18: Психологія спілкування у військовому колективі Час: 2 години Мета заняття: 1. Обговорення першого питання: Комунікативний компонент спілкування 30 хв. Відповідають на запитання Приймають участь у дискусії Обговорення другого питання: Інтерактивний компонент спілкування 30 хв....
38127. Кондиционеры. Типы кондиционеров 158 KB
  Современное понятие «кондиционер» (air conditioner, от англ. air — воздух и condition — состояние) как обозначение устройства для поддержания заданной температуры в помещении, существует достаточно давно. Интересно, что впервые слово кондиционер было произнесено вслух ещё в 1815 году.