28565

Алгоритма цифровой подписи Эль Гамаля, преимущества по сравнению с методом RSA, недостатки

Доклад

Информатика, кибернетика и программирование

Алгоритма цифровой подписи Эль Гамаля преимущества по сравнению с методом RSA недостатки. В отличие от RSA метод ЭльГамаля основан на проблеме дискретного логарифма. По сравнению с методом RSA данный метод имеет целый ряд преимуществ: 1. Кроме того данный алгоритм подписи не допускает его использования в качестве алгоритма шифрования в отличии от RSA в котором шифрование и подпись суть одно и то же а следовательно не подпадает ни под какие экспортные ограничения из США.

Русский

2013-08-20

13.41 KB

57 чел.

43. Алгоритма цифровой подписи Эль Гамаля, преимущества по сравнению с методом RSA, недостатки.

Система Эль-Гамаля – это криптосистема с открытым ключом, основанная на проблеме логарифма, Система включает как алгоритм шифрования, так и алгоритм цифровой подписи. В отличие от RSA метод Эль-Гамаля основан на проблеме дискретного логарифма.

По сравнению с методом RSA данный метод имеет целый ряд преимуществ:

1.  При заданном уровне стойкости алгоритма цифровой подписи целые числа, с которыми приходится проводить вычисления, имеют запись на 25% короче, что соответственно уменьшает сложность вычислений почти в 2 раза и позволяет заметно сократить объем используемой памяти;

2.   При выборе параметров достаточно проверить всего два достаточно легко проверяемых условия;

   Алгоритм не запатентован, и не требует специальной лицензии на его реализацию. Кроме того данный алгоритм подписи, не допускает его использования в качестве алгоритма шифрования (в отличии от RSA в котором шифрование и подпись суть одно и то же), а следовательно не подпадает ни под какие экспортные ограничения из США.

Множество параметров системы включает простое число p и целое число g, степени которого по модулю р порождают большое число элементов Zp. У пользователя А есть секретный ключ а и открытый ключ у, где у = ga(mod p). Предположим, что пользователь В желает послать сообщение т пользователю А. Сначала В выбирает случайное число k, меньшее р, и вычисляет y1=gk(mod p), y2=m*(yk(mod p)),

где * обозначает побитовое "исключающее ИЛИ". В посылает А пару (у1, у2).

После получения шифрованного текста пользователь А вычисляет m=(y1a mod p)*y2.

Известен вариант этой схемы, когда операция заменяется на умножение по модулю р. Это удобнее в том смысле, что в первом случае текст (или значеникции) необходимо разбивать на блоки той же длины, что и число yk(mod p) Во втором случае этого не требуется и можно обрабатывать блоки текста заранее заданной фиксированной длины (меньшей, чем длина числа р). Уравнение расшифрования в этом случае будет таким: m=y2/y1k mod p.

Однако, при всех перечисленных выше преимуществах алгоритм Эль Гамаля имеет по сравнению с RSA и некоторые недостатки.

   В частности, при том же уровне стойкости он оперирует с целыми числами на 25% короче, чем RSA, но длина подписи получается в 1,5 раза больше, что увеличивает время ее вычисления и ужесточает требования к надежности канала связи.


 

А также другие работы, которые могут Вас заинтересовать

27835. Расчет выдержек времени МТЗ 76 KB
  Основным пусковым органом МТЗ с независимой выдержкой времени является реле РТ40 а МТЗ с ограниченной выдержкой времени – РТ80. Реле РТ80 Сложное большое реле которое совмещает в себе токовое времени и указательное реле. Соответственно защита на этом реле имеет преимущества. В этом реле РТ80 есть два элемента: индукционный элемент эл.
27836. Выбор тока срабатывания максимальной токовой защиты 87 KB
  max Котс – учитывает неточность расчета погрешности в работе реле. Iвз – максимальное значение тока при котором пусковой орган защиты – реле тока – возвращается в первоначальное состояние. коэффициент возврата защиты 1 всегда Iвз = Кв Iсз эта формула получена для первичных реле где Iсз = Iср Iкз = Iсз Схема включения обмоток реле и трансформаторов тока в неполную звезду для этой схемы Iр = Iср при КЗ...
27837. Токовая отсечка на линии с односторонним питанием 77 KB
  Селективность действия токовой отсечки без выдержки времени достигается тем, что ее ток срабатывания выбирается больше тока КЗ, проходящего через защиту при повреждении вне защищаемого элемента.
27839. Токовая защита со ступенчатой характеристикой выдержки времени 49 KB
  Совмещая токовую отсечку и МТЗ получаем ступенчатую характеристику с выдержкой времени. III ступень для резервирования отказов I и II ступеней.
27840. Максимальная токовая направленная защита 127 KB
  Она отличается от обычной МТЗ тем что вводится дополнительный орган определяющий направление мощности КЗ реле направления мощности который реагирует на фазу тока КЗ относительно напряжения на шинах подстанции в месте установки комплекта защиты то знак мощности и реле направления мощности блокирует комплект защиты. Если направление мощности КЗ от шин к линии то это знак мощности КЗ и реле направления мощности закрывая свои контакт разрешает комплекту МТНЗ действовать. Комплект МТНЗ состоит из 3 органов: пускового направления...
27841. Продольная дифференциальная защита 235 KB
  Расчет тока небаланса в дифференциальной защите. Ток небаланса. Iср Iнб – следовательно нужно уменьшать ток небаланса. Ток небаланса – геометрическая разность Iном.
27842. Трансформаторы напряжения в схемах релейной защиты: устройство, схема замещения, цель применения 104.5 KB
  Трансформаторы напряжения в схемах релейной защиты: устройство схема замещения цель применения Трансформатор напряжения в схемах РЗ. ТН так же как и ТТ обеспечивает изоляцию цепей вторичной коммутации от ВН и позволяют независимо от первичного напряжения получить стандартную величину вторичного напряжения = 100В. Однако за счет падения напряжения мы имеем – в реальном ТН.
27843. Поперечная дифференциальная токовая защита 88 KB
  Для осуществления защиты используются ТТ с одинаковыми коэффициентами трансформации, установленные со стороны общих шин в одноименных фазах. Реле тока КА включается на разность токов двух одноименных фаз сдвоенной линии по схеме с циркулирующими токами.