2863

Электротехника и электроника

Контрольная

Энергетика

Цепь постоянного тока содержит резисторы, соединенные смешанно. Схема цепи с указанием резисторов приведена на рис. Всюду индекс тока или напряжения совпадает с индексом резистора, по которому проходит этот ток или на котором действует эт...

Русский

2012-10-20

187 KB

278 чел.


ЗадаЧА 1

Цепь постоянного тока содержит резисторы, соединенные смешанно. Схема цепи с указанием резисторов приведена на рис.1. Всюду индекс тока или напряжения совпадает с индексом резистора, по которому проходит этот ток или на котором действует это напряжение. Например, через резистор R3 проходит ток I3 и на нем действует напряжение U3.

Дано:

I3 = 1,25 А, R1 = 2 Ом, R2 = 4 Ом, R3 = 12 Ом, R4 = 3 Ом, R5 = 6 Ом.

Определить напряжение U1, мощность, потребляемую всей цепью, и расход электрической энергии цепью за 8 часов работы.

Рис.1.

Решение.

Преобразуем схему к эквивалентному виду (рис.2).

Сопротивления R2 || R3 соединены параллельно:

Напряжение на элементе R3:

U3 = I3 R3 = 1,25*12 = 15 В.

На элементе R2 такое же напряжение:

U2 = U3 = 15 В.

Ток в ветви 2 равен:

I2 = U2 / R2 = 15 / 4 = 3,75 А.

По первому закону Кирхгофа:

I4 =  I3 + I2 = 1,25 + 3,75 = 5 А.

Напряжение на элементе R4:

U4 = I4 R4 = 5*3 = 15 В.

Напряжение между точками C и D:

UCD = U4 + U2 = 15 + 15 = 30 В.

Сопротивления R23 + R4 соединены последовательно:

R234 = R23 + R4 = 3 + 3 = 6 Ом.

Напряжение в ветви 5:

UCD = U5 = I4 R234 = 5*6 = 30 В.

Ток в ветви 5 равен:

I5 = U5 / R5 = 30 / 6 = 5 А.

По первому закону Кирхгофа:

I1 = I4 + I5 = 5 + 5 = 10 А.

Напряжение на элементе 1:

U1 = R1 I1 = 2*10 = 20 В.

Напряжение на зажимах А и В:

UAB = U1 + U5 = 20 + 30 = 50 В.

Мощность, потребляемая всей цепью:

P = UAB I1 = 50 · 10 = 500 Вт.

Расход электрической энергии цепью за 8 часов работы:

W8ч. = Р · t = 500 · 8 = 4000 Вт·ч = 4 кВт·ч.


Задача 2

Цепь переменного тока содержит различные элементы (резисторы, индуктивности, ёмкости), включенные последовательно. Схема цепи приведена на соответствующем рис.2.

Начертить схему цепи и определить следующие величины, относящиеся к данной цепи, если они не заданы в таблице:

  1.  Полное сопротивление Z;
  2.  Напряжение U, приложенное к цепи;
  3.  Ток I;
  4.  Угол сдвига φ (по величине и знаку);
  5.  Активную Р, реактивную Q и полную S мощности цепи.

Начертить в масштабе векторную диаграмму цепи и пояснить характер изменения (увеличится, уменьшится, останется без изменений) тока, активной, реактивной мощности при увеличении частоты тока в 2 раза. Напряжение, приложенное к цепи, считать неизменным.

Рис.2

Дано: R1 = 10 Ом; R2 = 6 Ом; XC1 = 8 Ом; XC2 = 4 Ом.

Ток в цепи:

I = 5 А.

Полное сопротивление цепи

Напряжение источника:

U = I·Z = 5·20 = 100 В.

Полная мощность:

S = U I = 100*5 = 500 ВА.

Активная и реактивная мощность цепи:

Р = I2 (R1 + R2) = 52 · (10+6) = 400 Вт;

Q = P tgφ = 400 · (-0,75) = 300 Вар,

где  tgφ = (– XС1 XC2) / (R1 + R2) = (-8-4) / (10 + 6) = 0,75  → φ = -37о.

Построим векторную диаграмму (mU = 1 В/мм) (рис.3):

UR1 = I R1 = 5*10 = 50 В.

UС1 = I ХС1 = 5*8 = 40 В.

UR2 = I R2 = 5*6 = 30 В.

UС2 = I XC2 = 5*4 = 20 В.

Рис.3

При увеличении частоты питающей сети f  в 2 раза уменьшатся значения емкостных сопротивлений в 2 раза, т.к. XC = 1 / (wC) = 1 / (2πfC). При неизменном напряжении ток при этом увеличится, активная, реактивная и полная мощности – увеличатся (см. формулы).


Задача 3

Трехфазный асинхронный электродвигатель с короткозамкнутым ротором установлен для привода ленточного конвейера. Номинальное напряжение сети Uном = 380 В. Полезная мощность на валу Рном2 = 17,34 кВт, суммарные потери мощности ΣР = 3,06 кВт; коэффициент мощности cosφном = 0,8; синхронная частота вращения магнитного поля статора n1 = 750 об/мин; номинальный момент Мном = 226,8 Н*м; частота тока в сети f1 = 50 Гц.

Решение.

Определим потребляемую электрическую мощность Р1

кВт.

Определяем КПД:

Определим потребляемый ток Iном:

Определим частоту вращения:

об/мин.

Определим номинальное скольжение sном:

SН = (n1n2)/n1 = (750 – 730) / 750 = 0,027.

Определим частоту тока в роторе f2:

f2 = f1 SH = 50 · 0,027 = 1,33 Гц.

Как изменится при увеличении нагрузки на валу двигателя частота вращения ротора n2?

Частота вращения ротора будет изменяться при изменении нагрузки на валу. Отсюда появилось название двигателя – асинхронный (несинхронный). При увеличении нагрузки на валу двигатель должен развивать больший вращающий момент, а это происходит при снижении частоты вращения ротора.


Задача 4

К трехфазному трансформатору с номинальной мощностью Sном = 100 кВА и номинальными напряжениями первичной Uном1 = 6 кВ и вторичной Uном2 = 0,23 кВ обмоток присоединена активная нагрузка Р2 = 80 кВт при коэффициенте мощности cosφ2 = 0,85. Потери в трансформаторе: Рст = 0,33 кВт; Рон = 2,27 кВт.

Определить:

1) номинальные токи в обмотках Iном1 и Iном2;

2) коэффициент нагрузки трансформатора КН 

3) токи в обмотках I1 и I2 при фактической нагрузке;

3) суммарные потери мощности ΣР при номинальной нагрузке;

4) КПД при фактической нагрузке.

Решение.

1) Полная мощность трехфазного трансформатора определяется соотношением

Поэтому отсюда можно найти токи при номинальной нагрузке:

А.

А.

2) Полная мощность нагрузки:

кВА.

Коэффициент нагрузки трансформатора КН:

.

3) Аналогично п.1 можно найти токи при фактической нагрузке:

А.

А.

4) Суммарные потери мощности при номинальной нагрузке складываются из потерь в магнитопроводе (постоянных) и потерь в обмотках, зависящие от тока нагрузки, т.е. Рх и Рк. Эти величины определяются каталожными данными трансформатора мощностью 100 кВА (по условию они даны). Таким образом,

Рх = 0,33 кВт;   Рк = 2,27 кВт.

ΣР = Рх + Рк = 0,33 + 2,27 = 2,6 кВт.

5) КПД трансформатора при фактической нагрузке:

,

где β = КН – коэффициент нагрузки трансформатора.

  или    η = 98,4%.


Задача 5

Составить схему трехфазного выпрямителя на трех диодах, используя стандартные диоды типа Д210. Параметры диода: Iдоп = 0,1 А; Uобр = 500 В.

Мощность потребителя Pd = 60 Вт при напряжении питания Ud = 300 В. Начертить схему выпрямителя.

Определяем ток потребителя:

Определяем напряжение, действующее на диод в непроводящую часть периода для трехфазной однотактной схемы выпрямления:

Для мостовой схемы диоды должны удовлетворять по параметрам условию по допустимому прямому току Iдоп и обратному напряжению Uобр:

Второе условие не выполняется, поэтому два диода нужно включить последовательно, тогда

Трехфазная однотактная схема выпрямления тока (трехфазная схема со средней точкой, трехфазная нулевая трехпульсная схема) на диодах типа Д210 представлена на рис.4.

Схема (рис.4) состоит из трансформатора, шести вентилей и приемника энергии . Для уменьшения высших гармоник выпрямленного тока последовательно с сопротивлением Rd включен реактор с индуктивным сопротивлением ().

Обычно первичную обмотку трансформатора соединяют треугольником, а вторичную – звездой или первичную –звездой, а вторичную – зигзагом ().

Пусть трансформатор соединен по схеме .

Рис.4. Трехфазная однотактная вентильная схема


Задача 6

Начертите структурную схему микропроцессора с названием всех ее элементов. Объяснить, почему он не может работать независимо.

В состав микропроцессора (МП) (рис. 1) входят арифметико-логическое устройство, устройство управление и блок внутренних регистров.

Рис.5. Структурная схема микропроцессора

Арифметико-логическое устройство состоит из двоичного сумматора со схемами ускоренного переноса, сдвигающего регистры и регистров для временного хранения операндов. Обычно это устройство выполняет по командам несколько простейших операций: сложение, вычитание, сдвиг, пересылку, логическое сложение (ИЛИ), логическое умножение (И), сложение по модулю 2.

Устройство управления управляет работой АЛУ и внутренних регистров в процессе выполнения команды. Согласно коду операций, содержащемуся в команде, оно формирует внутренние сигналы управления блоками МП. Адресная часть команды совместно с сигналами управления используется для считывания данных из определенной ячейке памяти или для записи данных в ячейку. По сигналам УУ осуществляется выборка каждой новой, очередной команды.

Блок внутренних регистров БВР (или микропроцессорная память), расширяющий возможности АЛУ, служит внутренней памятью МП и используется для временного хранения данных и команд. Он также выполняет некоторые процедуры обработки информации.

Процессор может содержать несколько математических сопроцессоров. Каждый из них способен выполнять, по меньшей мере, одну операцию с плавающей точкой независимо от того, что делают другие АЛУ. Метод конвейерной обработки данных позволяет одному математическому сопроцессору выполнять несколько операций одновременно. Сопроцессор поддерживает высокоточные вычисления как целочисленные, так и с плавающей точкой и, кроме того, содержит набор полезных констант, ускоряющих вычисления. Сопроцессор работает параллельно с центральным процессором, обеспечивая, таким образом, высокую производительность. Система выполняет команды сопроцессора в том порядке, в котором они появляются в потоке. Математический сопроцессор персонального компьютера IBM PC позволяет ему выполнять скоростные арифметические и логарифмические операции, а также тригонометрические функции с высокой точностью.

Микропроцессор не может работать независимо, т.к. он выполняет всю обработку данных, поступающих в компьютер и хранящихся в его памяти, под управлением программы, также хранящейся в памяти.


Список литературы

  1.  Данилов Н.А., Иванов П.М. Общая электротехника с основами электроники. «В.Ш.», 1989г.
  2.  Попов B.C., Николаев С.А. Общая электротехника с основами электроники. «В.Ш.», 1977г.
  3.  Рабинович Э.А. Сборник задач и упражнений по общей электротехнике. М., «В.Ш.», 1978г.
  4.  Частоедов А.А. Электротехника. М., «В.Ш.», 1989г.
  5.  Гусев Н.Г., Березин Т.Ф., Масленников В.В. Задачи по общей электротехника с основами электроники. М., «В.Ш.», 1983г.
  6.  Основы промышленной электроники (под ред. В.Г. Герасимова). М., «В.Ш.», 1986г.
  7.  Стрыгин В.В., Царев Л.С. Основы вычислительной и микропроцессорной техники программирования. М., «В.Ш.», 1989г.
  8.  Киричева М.М. Основы вычислительной техники. М., «Недра», 1983г.
  9.  Морозов А.Г. Электротехника, электроника и импульсная техника. М., «В.Ш.», 1987г.


 

А также другие работы, которые могут Вас заинтересовать

21195. Алгоритмы решения логических задач 57 KB
  Используя дедуктивную логику из двух или нескольких исходных аксиом имеющихся в логической базе знаний можно вывести очередное утверждениеследствие или доказать истинность ложность целевого утверждения теоремы путем использования определенных правил вывода. Этот процесс получения новых знаний из имеющихся аксиом называют логическим выводом на знаниях. Основными типами логических задач которые решаются с использованием метода резолюций являются следующие: а задача вывода следствий в которой нужно найти все утверждения которые можно...
21196. Семантические сети представления знаний 84 KB
  Семантические сети представления знаний 9. СС – это модель представления знаний в которой вся необходимая информация может быть описана в виде совокупности отношений: первый объект – бинарное отношение – второй объект . Эти отношения образуют иерархическую сеть в которой вершины каждого уровня знаний соединяется линиями с соответствующими вершинами верхнего и нижнего уровней. Проблема поиска решения в семантической базе знаний сводится к задаче поиска фрагмента сети подсети отражающего ответ на запрос пользователя.
21197. Фреймовые модели представления знаний 117.5 KB
  Понятие фрейма введено М. Имя таблицы является уникальным именем фрейма. Атрибуты фрейма могут также быть фреймами. У фрейма есть оболочка которая называется протофреймом прототипом образцом.
21198. Продукционные модели представления знаний 62 KB
  Например продукционную модель действий человека при посадке в автобус можно представить в следующем виде: Если не имеет деньги то пешком Если имеет деньги и не пришел автобус то ждать Если пришел автобус и не тот маршрут то ждать Если пришел автобус и тот маршрут то садиться в автобус 11. Если имеет колеса и имеет винт и имеет крылья и возит грузы то самолет . Если имеет колеса и имеет винт и не имеет крылья и возит грузы то вертолет. Если не...
21199. Характеристики программного обеспечения систем искусственного интеллекта 59.5 KB
  Структура и свойства программного обеспечения Основными составными частями программного обеспечения ПрО систем искусственного интеллекта СИИ являются: программноаппаратные средства СИИ Лекция №5; программные средства представления знаний в СИИ Лекции №№611; языки программирования и среды функционирования СИИ Лекция №13; инструментальные программные средства создания СИИ Лекция №14 и др. Основными особенностями ПрО которые существенно отличают их от ПрО традиционных систем управления и обработки данных являются свойства...
21200. Язык „Prolog” и его приложения 175.5 KB
  Язык Prolog€ и его приложения 13. Общие сведения Язык Prolog€ Programming in Logical разработан А. В языке Prolog€ реализованы идеи логического прграммирования – нового перспективного направления в развитии современных средств программирования которое возникло в рамках работ по созданию систем искусственного интеллекта. При использовании языка Prolog€ основное внимание уделяется описанию структуры решаемой задачи а не разработке традиционного алгоритма ее решения.
21201. Инструментальные средства создания интеллектуальных систем 64 KB
  В состав типовой технологической инструментальной системы входят: база данных системы; подсистема автоматизации проектирования и программирования; подсистема отладки документирования и сопровождения; подсистема управления процессом создания СИИ и другие подсистемы. Главным направлением в технологии разработки и реализации инструментальных систем в настоящее время является так называемая CASEтехнология Computer Aided Software Engineering поддерживающая все стадии жизненного цикла системы. Программные средства CASEтехнологии делятся на...
21202. Общая характеристика проблемы создания систем искусственного интеллекта 90 KB
  Для решения трудно формализуемых и неформализуемых задач в разных областях человеческой деятельности и создаются системы искусственного интеллекта СИИ . В настоящее время у создателей СИИ нет единого мнения по определению понятия интеллекта. Таким образом определить понятие СИИ так чтобы оно удовлетворяло всех довольно трудно. Разнообразие существующих определений пока не позволило создать единое стратегическое направление исследований в области СИИ.
21203. Интеллект человека. Основные характеристики 54.5 KB
  Интеллект человека. Особенности строения и функционирования мозга человека В определение дисциплины Системы искусственного интеллекта входит понятие интеллект под которым подразумевают естественный интеллект человека выработанный человечеством в течение миллионов лет эволюции. Человек считается интеллектуальным от природы в связи со способностью человеческого мозга ставить и решать интеллектуальные задачи связанные с жизнедеятельностью и выживанием человека в сложных зачастую – экстремальных условиях окружающего мира. До сих пор...