28992

Кольцо

Доклад

Информатика, кибернетика и программирование

Кольцо. ПК подключены к повторителям кот соединены шиной данных в однонаправленное кольцо. Обмен: Кольцо бывает тактированное и маркерное.

Русский

2013-08-20

44.5 KB

0 чел.

19 кольцо.

Топология – физическое расположение ПК узлом коммутации и линий связи в сети, а также их организационное взаимодействие.

Кольцо. ПК подключены к повторителям, кот соединены шиной данных в однонаправленное кольцо. Метод передачи данных: программно-аппаратный метод.

Обмен: Кольцо бывает тактированное и маркерное.

Маркерное кольцо: по кольцу движется специальная метка (маркер) ПК имеющий сообщение для передачи дожидается маркера, захватывает его и отправляет сообщение в кольцо, кот проходит все повторители до адресата, адресат получает сообщение и отправляет подтверждение в кольцо, получив которое отправитель формирует новый маркер и отпускает его в кольцо.

Тактированное кольцо: по кольцу движется замкнутая последовательность тактов. Каждый имеет бит указатель занятости ПК отправитель дожидается пустого такта, вкладывает в него сообщение и оно уходит по кольцу до адресата. Адресат в последнем такте сообщения отправляет подтверждение и считается, что сеанс передачи закончен.

Достоинства: равенство ПК по доступу к отправке сообщений.

Недотаток: небольшое число ПК, сложность расширения, сложность диагностирования, низкая надежность работы.


 

А также другие работы, которые могут Вас заинтересовать

28560. Электро́нная по́дпись (ЭП) 17.3 KB
  Кроме этого использование электронной подписи позволяет осуществить: Контроль целостности передаваемого документа: при любом случайном или преднамеренном изменении документа подпись станет недействительной потому что вычислена она на основании исходного состояния документа и соответствует лишь ему. Защиту от изменений подделки документа: гарантия выявления подделки при контроле целостности делает подделывание нецелесообразным в большинстве случаев. Доказательное подтверждение авторства документа: Так как создать корректную подпись...
28561. Открытое шифрование и электронная подпись 14.08 KB
  Пользователь А вырабатывает цифровую подпись предназначенного для пользователя В сообщения М с помощью следующего преобразования: SIGm=EebnbEdanaM При этом он использует: свое секретное преобразование; открытое преобразование Eebnb пользователя В. Edana Затем он передает пользователю В пару{MSIGM}. Пользователь В может верифицировать это подписанное сообщение сначала при помощи своего секретного преобразованияс целью получения Edbnb EdanaM=EdbnbSIGM=EdbnbEebnbEdanaM и затем открытого Eeana пользователя А для...
28562. Основные результаты статьи Диффи и Хеллмана 24.93 KB
  Первая публикация данного алгоритма открытого ключа появилась в статье Диффи и Хеллмана в которой вводились основные понятия криптографии с открытым ключом и в общих чертах упоминался алгоритм обмена ключа ДиффиХеллмана. Сам алгоритм ДиффиХеллмана может применяться только для обмена ключами. Безопасность обмена ключа в алгоритме ДиффиХеллмана вытекает из того факта что хотя относительно легко вычислить экспоненты по модулю простого числа очень трудно вычислить дискретные логарифмы.
28563. Однонаправленные функции, построение однонаправленных функций с секретами 14.43 KB
  Обозначим через QF сложность вычисления значения Fx для произвольного xX через QF1 сложность вычисления по произвольному yY значения x такого что Fx=y сложность вычисления понимается в стандартном смысле теории сложности. Сложность вычисления F такова что алгоритм ее вычисления реализуем на современной технике и выдает ответ за приемлемое время 2. Сложность вычисления F1 такова что алгоритм ее вычисления либо не реализуем на современной технике либо не дает ответ за приемлемое время. Что считать приемлемым...
28564. Система RSA. Использование алгоритма Евклида для расчета секретного ключа d 23.69 KB
  Подобный блок может быть интерпретирован как число из диапазона 0; 2i1;; для каждого такого числа назовем его mi вычисляется выражение ci=mie mod n 3.По теорема Эйлера если число n представимо в виде двух простых чисел p и q то для любого x имеет место равенство Xp1q1 mod n =1 Для дешифрования RSAсообщений воспользуемся этой формулой. Возведем обе ее части в степень y: Xyp1q1 mod n = 1 y=1 Теперь умножим обе ее части на x : xyp1q11 mod n =...
28565. Алгоритма цифровой подписи Эль Гамаля, преимущества по сравнению с методом RSA, недостатки 13.41 KB
  Алгоритма цифровой подписи Эль Гамаля преимущества по сравнению с методом RSA недостатки. В отличие от RSA метод ЭльГамаля основан на проблеме дискретного логарифма. По сравнению с методом RSA данный метод имеет целый ряд преимуществ: 1. Кроме того данный алгоритм подписи не допускает его использования в качестве алгоритма шифрования в отличии от RSA в котором шифрование и подпись суть одно и то же а следовательно не подпадает ни под какие экспортные ограничения из США.
28566. Проблема дискретного логарифмирования, аутентификация 86.42 KB
  Система строится из криптографических примитивов низкого уровня:групповой операции симметричного шифра функции хэширования и алгоритма вычисления кода аутентификации сообщенияимитовставки MAC. Код аутентификации сообщения позволяет пользователям обладающим общим секретным ключом выработать битовую строку для аутентификации и проверки целостности данных Пусть Msg = {01} – пространство сообщений mKey = {01}mLen – пространство ключей для вычисления MAC для некоторого mLen N Tag = {01}tLen – включающее множество всех возможных...
28567. Система открытого шифрования RSA, атаки на RSA 15.87 KB
  В настоящее время наиболее развитым методом криптографической защиты информации с известным ключом является RSA названный так по начальным буквам фамилий ее изобретателей Rivest Shamir и Adleman и представляющую собой криптосистему стойкость которой основана на сложности решения задачи разложения числа на простые сомножители. Чтобы использовать алгоритм RSA надо сначала сгенерировать открытый и секретный ключи выполнив следующие шаги: выберем два очень больших простых числа p и q; определим n как результат умножения p на q n = p Ч...
28568. Система электронной подписи Эль Гамаля (EGSA - ElGamal Signature Algorithm) 16.07 KB
  Затем выбирается секретное число х и вычисляется открытый ключ для проверки подписи y=gxmod p Далее для подписи сообщения М вычисляется его хэшфункция т = hM. Выбирается случайное целое k:1 k p1 взаимно простое с р–1 и вычисляется r=gkmod p. После этого с помощью расширенного алгоритма Евклида решается относительно s уравнение m=xrksmodp1. Получатель подписанного сообщения вычисляет хэшфункцию сообщения m=hM и проверяет выполнение равенства yrrs=gxrgks=gxrks=gmmod p.