29010

Кессоны. Условия применения, конструктивная схема, последовательность производства работ

Доклад

Архитектура, проектирование и строительство

При залегании прочных грунтов на значительной глубине когда устройство фундаментов в открытых котлованах становится трудновыполнимым и экономически невыгодным а применение свай не обеспечивает необходимой несущей способности прибегают к устройству фундаментов глубокого заложения. Необходимость устройства фундаментов глубокого заложения может быть вызвана и особенностями самого сооружения например когда оно должно быть опущено на большую глубину заглубленные и подземные сооружения. Одним из видов фундаментов глубокого заложения наряду с...

Русский

2013-08-20

35 KB

29 чел.

Задание 25. Кессоны. Условия применения, конструктивная схема, последовательность производства работ.

При залегании прочных грунтов на значительной глубине, когда устройство фундаментов в открытых котлованах становится трудновыполнимым и экономически невыгодным, а применение свай не обеспечивает необходимой несущей способности, прибегают к устройству фундаментов глубокого заложения. Необходимость устройства фундаментов глубокого заложения может быть вызвана и особенностями самого сооружения, например, когда оно должно быть опущено на большую глубину (заглубленные и подземные сооружения). К таким сооружениям относятся подземные гаражи и склады, ёмкости очистных, водопроводных и канализационных сооружений, здания насосных станций и многие другие.

Одним из видов фундаментов глубокого заложения наряду с опускными колодцами, тонкостенными оболочками, буровыми опорами и фундаментами, возводимыми методом "стена в грунте", являются кессоны.

Кессонный метод устройства фундаментов глубокого заложения был предложен для строительства в сильно обводнённых грунтах, содержащих прослойки скальных пород или твёрдые включения (валуны, погребённую древесину и т.д.). В этих условиях устройство фундамента глубокого заложения по схеме "насухо" требует больших затрат на водоотлив, а разработка грунта под водой невозможна из-за наличия в грунте твёрдых включений.

Кессон схематически представляет собой опрокинутый вверх днищем ящик, образующий рабочую камеру, в которую под давлением нагнетается сжатый воздух, уравновешивающий давление грунтовой воды на данной глубине, что не позволяет ей проникать в рабочую камеру, благодаря чему разработка грунта ведётся насухо без водоотлива.

Кессон состоит из двух основных частей: кессонной камеры и надкессонного строения (рис.1).

Кессонная камера выполняется из железобетона и состоит из потолка и стен, называемых консолями. Консоли камеры с внутренней стороны имеют наклон и заканчиваются ножом. Толщина консолей в месте примыкания к потолку составляет 1,5...2 м. При бетонировании кессонной камеры в её потолке оставляют отверстие для установки шахтной трубы, труб сжатого воздуха и воды, а также подводки электроэнергии.

Надкессонное строение в зависимости от назначения кессона выполняется либо как колодец с железобетонными стенками (под заглубленное помещение), либо в виде сплошного массива из монолитного бетона или железобетона (для фундаментов глубокого заложения).

Главными элементами оборудования для опускания кессонов являются шлюзовые аппараты, шахтные трубы и компрессорная станция.

Шлюзовой аппарат, соединённый с кессонной камерой шахтными трубами, предназначен для шлюзования людей и грузов при их спуске в кессонную камеру и при подъёме из неё.

Последовательность производства работ при строительстве кессонов следующая.

Сначала на спланированной поверхности грунта возводится кессонная камера, на которой монтируются шлюзовой аппарат и шахтные трубы. Одновременно вблизи кессона сооружается компрессорная станция и монтируется оборудование для подачи в кессон сжатого воздуха.

После того как бетон кессонной камеры приобретёт проектную прочность, её снимают с подкладок и начинают погружение. Сжатый воздух начинают подавать в кессонную камеру, как только её нижняя часть достигнет уровня подземных вод. Давление воздуха, обеспечивающее отжим воды из камеры кессона, определяется из условия:

pв≥Нwγw

где pв - избыточное (сверх атмосферного) давление воздуха;

Нw -гидростатический напор на уровне банкетки ножа;

γw - удельный вес воды.

По мере погружения кессона в грунт наращивают шахтные трубы, если это необходимо, и возводят надкессонную часть сооружения.

После опускания кессона на проектную отметку всё специальное оборудование демонтируется, а рабочая камера заполняется бетоном.


 

А также другие работы, которые могут Вас заинтересовать

11923. Изучение тока в вакуумном диоде 363 KB
  1. ТЕОРИЯ РАБОТЫ Цель работы получение вольтамперной характеристики вакуумного диода и определение удельного заряда электрона. При достаточно малых анодных напряжениях при которых не достигается ток насыщения зависимость силы тока от анодного напряжения в вакуум
11924. Экспериментальное изучение характеристик вакуумного диода и определение работы выхода электронов из вольфрама 30 KB
  Лабораторная работа № 6 Цель работы: экспериментальное изучение характеристик вакуумного диода и определение работы выхода электронов из вольфрама. Приборы и оборудование: источник питания ИП 2 цифровых вольтметра соединительные провода. Содержание работы: В д...
11925. ЦИФРОВОЙ АДАПТИВНЫЙ ИЗМЕРИТЕЛЬ ВРЕМЕННЫХ ИНТЕРВАЛОВ ЦАИВИ-1 455.5 KB
  Лабораторная работа № 44 ЦИФРОВОЙ АДАПТИВНЫЙ ИЗМЕРИТЕЛЬ ВРЕМЕННЫХ ИНТЕРВАЛОВ ЦАИВИ1. Цель работы Изучение цифровых методов измерения временных интервалов. Изучение способов автоматического переключения пределов измерения в цифровых приборах. ...
11926. Исследование интегральных цифро-аналоговых и аналого-цифровых преобразователей 1.1 MB
  Исследование интегральных цифроаналоговых и аналогоцифровых преобразователей. I. Цель работы Целью работы является изучение принципа действия особенностей использования точности и быстродействия интегральных ЦАП и аналогоцифровых АЦП преобразователей. ...
11927. Автоматический выбор диапазонов измерения в цифровых вольтметрах 85 KB
  ЦИФРОВЫЕ МЕТОДЫ И СРЕДСТВА ИЗМЕРЕНИЯ Адаптивные измерительные устройства Лабораторная работа № 45 Автоматический выбор диапазонов измерения в цифровых вольтметрах. 1. Цель работы: Изучение цифровых интегрирующих методов измерения напряжения. ...
11928. Цифровой частотомер с автоматическим выбором диапазонов измерения 64 KB
  Цифровой частотомер с автоматическим выбором диапазонов измерения Цифровой частотомер с автоматическим выбором диапазонов измерения: Методические указания к лабораторной работе / Рязан. гос. радиотехн. университет; Сост.: Е.М. Прошин Рязань 2006. 9 с. Содержат описан...
11929. Измерение диэлектрической проницаемости и угла диэлектрических потерь твердых диэлектриков 475 KB
  ЛАБОРАТОРНАЯ РАБОТА № 2 Измерение диэлектрической проницаемости и угла диэлектрических потерь твердых диэлектриков Цель работы: изучить основные электрические свойства диэлектрических материалов и их характеристики. ПРОГРАММА РАБОТЫ 1. Ознакомиться с образ...
11930. Исследование зависимости тангенса угла диэлектрических потерь и диэлектрической проницаемости от температуры 420 KB
  ЛАБОРАТОРНАЯ РАБОТА № 3 Исследование зависимости тангенса угла диэлектрических потерь и диэлектрической проницаемости от температуры Цель работы: исследовать зависимость тангенса угла диэлектрических потерь и диэлектрической проницаемости от температуры. ...
11931. Определение удельного сопротивления проводников 120 KB
  ЛАБОРАТОРНАЯ РАБОТА № 4 Определение удельного сопротивления проводников Цель работы: изучить основные электрические свойства проводниковых материалов и их характеристики. ПРОГРАММА РАБОТЫ 1. Ознакомиться с образцами проводниковых материалов. 2. Изучить осн...