29254

СУБЪЕКТ и ОБЪЕКТ КУЛЬТУРЫ

Доклад

Культурология и искусствоведение

Субъект культуры в культурологическом понимании какаялибо социальная общность или конкретный индивид реализующий в практической деятельности культуросозидающее начало потребление и духовное освоение объектов культуры воспроизводство себя как человека определенной исторической эпохи. В культурологическом понимании объект культуры элемент фрагмент бытия культуры являющийся сферой реализации активности и историческим результатом практической деятельности субъекта культуры.

Русский

2013-08-21

27 KB

30 чел.

СУБЪЕКТ и ОБЪЕКТ КУЛЬТУРЫ (лат. subjectus- лежащий внизу, находящийся в основе, лат. objectum — предмет) — понятия, фиксирующие исходные основания человеческой деятельности, связанные с процессами опредмечивания и распредмечивания  реальности.

Субъект — носитель практической деятельности и познания (индивид или социальная группа), источник активности, направленной на объект.

Субъект культуры в культурологическом понимании — какая-либо социальная общность или конкретный индивид, реализующий в практической деятельности культуросозидающее начало, потребление и духовное освоение объектов культуры, воспроизводство себя как человека определенной исторической эпохи.

Объект — философская категория, выражающая то, что противоречит субъекту в его практической и познавательной деятельности. В культурологическом понимании объект культуры — элемент, фрагмент бытия культуры, являющийся сферой реализации активности и историческим результатом практической деятельности субъекта культуры.


 

А также другие работы, которые могут Вас заинтересовать

40132. Матрицы 93 KB
  Матрицы. Определение умножение матриц на число и сложение их умножение матриц ранг матрицы и его нахождение путем элементарных преобразований вычисление обратной матрицы по формулам и методом исключения. Матрицы это прямоугольные таблицы элементов из m строк и n строк. m n порядки матрицы они определяют размерность матрицы Обозначение: Если m = n то матрица называется квадратной.
40133. Определители 69 KB
  Каждой матрице Аijnn можно сопоставить число det= = R определитель матрицы А nго порядка. 4 Если уже введено понятие определителя n1ого порядка то взяв за основу I строку получаем: а11А11а12А12а1nА1n= Mij det n1ого порядка. Отличие умножается вся строка умножается одна строка или столбец Свойства det: 1 При замене строк столбцами т. 3 Если элементы 2х строк равны то det=0.
40134. Системы линейных алгебраических уравнений. Условие существования решения, решение систем по формулам Крамера и методом исключений, фундаментальная система решений 130 KB
  Условие существования решения решение систем по формулам Крамера и методом исключений фундаментальная система решений. СЛАУ называется система nго порядка: 1 СЛАУ можно представить в виде матрицы АХ = В где известные коэффициенты системы 1 известные правые части системы 1 неизвестные искомые величины Набор nмерный набор называется решением СЛАУ если при подстановке их вместо соответствующих неизвестных каждое из уравнений системы превращается в истинное равенство набор удовлетворяет 1. Если система...
40135. Линейные пространства. Аксиоматика, примеры (линейные пространства строк из n чисел, т*n-матриц, непрерывных на отрезке функций). Размерность, базис и система координат в Rn разложение по базису. Евклидово пространство 147.5 KB
  Евклидово пространство. Векторное линейное пространство Непустое множество элементов называется векторным пространством над полем лямбда если выполняется следующие аксиомы: I. пространство строк из n чисел xyx1y1xnyn x=x1 xn =00 =x x=1x=x1xn = вещественное пространство является векторным. нулевая матрица 0=А1А = векторное пространство.
40136. Пределы и непрерывность. Числовая последовательность и ее предел. Определение функции, ее непрерывность на языке эпсилон-дельта и языке пределов, равномерная непрерывность 165 KB
  Обратное не верно: xn=nsin n неограниченная не бесконечно большая Функция Функцией y = fx называется закон по которому каждому значению xDfR ставится в соответствие единственное действительное число yR. Функция может быть задана аналитически то есть формулой таблично или графически. y=x2 Если функция задана таблично то чтобы найти значение функции для промежуточных значений аргумента применяют интерполяцию заменяя функцию линейной квадратичной на участке между двумя значениями аргумента. Например fx0=0 = 3  O1...
40137. Производная функции одной переменной. Определение, ее геометрический смысл, простейшие правила вычисления производной (производная от функции, умноженной на константу, от суммы функций, от произведения функций, частного и степени). Производная сложной фун 140 KB
  Производная функции одной переменной. Определение ее геометрический смысл простейшие правила вычисления производной производная от функции умноженной на константу от суммы функций от произведения функций частного и степени. Производная сложной функции. Если предел  и конечен то его значение называют производной функции f в т.
40138. Дифференцирование функций многих переменных: производная по направлению, частные производные, дифференциал, Производная от сложных функций, градиент, направления убывания, геометрический смысл градиента 141 KB
  Если то функция называется дифференцируемой по x в точке x0 y0. 1 2  для  0  0:  x yDz  Ox0 y0 {x0 y0}: zx y  O Значение lim не должно зависеть от способа стремления точки x y к точке x0 y0: на плоскости для функции нескольких переменных При разных  получаем разные значения lim  lim не . Непрерывность Функция zx y называется непрерывной в точке x0 y0 если: 1. Если функция z = zx y дифференцируема в точке по совокупности аргументов то она непрерывна в этой точке.
40139. Определенный интеграл и его геометрический смысл (задача о площади криволинейной трапеции). Приближенное вычисление определенных интегралов, формулы трапеций и Симпсона 165.5 KB
  Пусть функция у = fx определена на отрезке [а b]. Обозначим через На каждом из сегментов выберем произвольные точки и составим интегральную сумму: Обозначим диаметр разбиения если  конечный не зависящий от способа разбиения отрезка [а b] и выбора точек то его значение называется определенным интегралом от функции fx его обозначение а функция fx называется интегрируемой по Риману на [а b]. Если функция fx интегрируема на [а b] то она ограничена на этом сегменте. ДОКВО Если функция fx не ограничена на [а b] то...
40140. Приведение задач линейного программирования к каноническому виду. Методы искусственного базиса 66 KB
  Основная теорема ЛП: если задача ЛП имеет решение то целевая функция достигает экстремального значения хотя бы в одной из угловых точек многоугольника решений. Таким образом с теоретической точки зрения решение задачи ЛП выглядит следующим образом: можно найти все угловые точки многоугольника решения высчитать в них значение ЦФ выбрать наибольшее наименьшее. процесс нахождения угловых точек сравним по трудности с решением исходной задачи. В этом заключается основная идея СМ которая предполагает: 1 уметь находить первоначальное базисное...