29333

Цветовые системы, используемые в обрабатывающей станции

Лекция

Математика и математический анализ

Недостатки такого выражения: неоднозначность системы координат RGB и аппаратная зависимость неясное представление о цвете на основе соотношения этих сигналов Воздействие на один из каналов приводит к изменению цвета которое трудно предсказать. Если хотим получить насыщенные цвета должны работать в пределах 50 светлоты По координате а цвет меняется от Зеленого до Пурпурного. У нас имеются две группы основных цветов: цвета аддитивного синтеза однозональные цвета: Красный Зеленый Синий двузональные цвета субтрактивного синтеза:...

Русский

2013-08-21

58 KB

2 чел.

Лекция 15

Цветовые системы, используемые в обрабатывающей станции

В настоящее время в обрабатывающей станции возможно использование трех основных систем описания цвета:

Первая система – RGB. Это система, которая характеризует сигнал цветного изображения с помощью естественных каналов: Красный, Зеленый, Синий, которые формируются при первичном цветоделении изображения в процессе сканирования. В этой системе по каждому каналу сигнал характеризуется уровнем, выраженным в относительных единицах двоичной системы, а именно значениями от 0 до 255. Соответственно, цвет изображения определяется соотношением величин сигналов по этим трем каналам.

Недостатки такого выражения:

  1.  неоднозначность системы координат RGB и аппаратная зависимость
  2.  неясное представление о цвете на основе соотношения этих сигналов

Воздействие на один из каналов приводит к изменению цвета, которое трудно предсказать.

В настоящее время система коррекции с системой такого отображения сигнала еще широко используется. Однако, недостатки этой системы приводят к постепенному переходу к отображению информации в колориметрической системе координат.

В настоящее время в качестве стандарта такой системы для полиграфии принята система Lab. В ряде случаев программное обеспечение позволяет использовать также систему XYZ. По сути дела, эти две системы равноценны и легко пересчитываются одна в другую.

Единственным преимуществом системы Lab является ее равноконтрастность.

Равноконтрастность системы означает, что в любом цветовом диапазоне равные цветовые различия будут выражаться равными числовыми величинами, определяемыми в данной системе.

(во всех зонах пороги различения будут одинаковы)

Поэтому в системе Lab можно находить цветовые различия по достаточно простым формулам.

Всякая система, имеющая три независимые координаты, может быть выражена в пространстве.

Важно: фигура сужается, что характеризует сжатие цветового охвата при осветлении или затемнении.

Если хотим получить насыщенные цвета, должны работать в пределах 50% светлоты


По координате а цвет меняется от Зеленого до Пурпурного.

По координате b цвет меняется от Синего к Желтому.

У нас имеются две группы основных цветов:

  •  цвета аддитивного синтеза (однозональные цвета): Красный, Зеленый, Синий
  •  двузональные цвета субтрактивного синтеза: Голубой, Пурпурный, Желтый

Пусть имеется Зеленый цвет, двигаемся по оси a.

Движение по оси a означает убывание Зеленого цвета и прибывание Пурпурного.

Наступает момент, когда Зеленый и Пурпурный сравнялись, то есть мы дошли до точки ахроматического цвета. Она находится в центре. Уровень светлоты будет определяться уровнем изначальной светлоты Зеленого.

Как найти цветовые различия в системе Lab

Пусть есть две точки: a1b1 и a2b2. Тогда:

Цветовые различия

В настоящее время существуют международные стандарты, в которых есть допуски цветового различия между подписанным в тираж оттиском и тиражным оттиском, а также допуски на цветовые различия между оттисками тиража.

Система Lab является объективной системой (как и всякая колориметрическая). Она однозначна. В ней нет ограничений по цветовому охвату. Она описывает все цветовое пространство. С этой системой также связана система выражения параметров цвета через системы LCH или HSB.

Системы LCH, HSB характеризуют колориметрические координаты системы цвета в величинах, понятных для интуитивного восприятия цвета. В них используется L – визуальная яркость, H – цветовой тон (эта величина характеризует, к какой зоне цветов относится цвет). В плоскости цветности ab цветовой тон характеризуется углом поворота  относительно оси. S и C – величины насыщенности цвета. Они характеризуют расположение точки в плоскости цветности и удаление от точки ахроматического цвета и приближение к линии максимальной насыщенности.

По сути дела, координаты LCH, HSB – это колориметрические координаты, связанные с системой Lab, которая рассчитывается из координат Lab и представляет собой полярный эквивалент этих координат. Эти координаты могут быть подставлены в формулу вычисления E.

Цветовое пространство Lab является наиболее подходящим цветовым пространством для использования в качестве некого промежуточного цветового пространства в процессе преобразования изображения, то есть, при коррекции цвета и других параметров. Основанием для этого является:

  1.  неограниченность этого цветового пространства, его однозначность
  2.  возможность оценки цветовых различий
  3.  возможность коррекции цвета, независимо от коррекции его светлоты и наоборот, возможность коррекции светлоты, независимо от коррекции цвета
  4.  возможность редакционной коррекции цвета по хорошо понятным параметрам цветового тона, насыщенности

Третье пространство – цветовое пространство полиграфического синтеза. Оно выражается с помощью аббревиатуры CMYK, где С – обозначение голубого цвета, M – пурпурного, Y – желтого, K – черного (контурный цвет). Полиграфический синтез осуществляется с помощью двузональных красок: голубой, пурпурной, желтой, которые называются триадой и черной, которая называется контурной.

При этом интенсивность цвета по каждой краске выражают в относительных площадях растровых точек, которые воспроизводит этот цвет.

Система обозначения какого-либо цвета будет выглядеть так: 70C50M20Y10K – сине-фиолетовый цвет.

Очень полезно для памятных цветов иметь представление, как они выражаются в CMYK. Например, цвет неба: процент пурпурного цвета должен быть не более 40% от голубого.

Система CMYK является неизбежной в качестве окончательного представления информации, на основе этой системы должен быть сформирован файл, предназначенный для вывода.

Система CMYK является неоднозначной системой, она зависит от многих факторов и поэтому один и тот же цвет может быть выражен по-разному в координатах CMYK, в зависимости от условий проведения процесса и наоборот, одинаковые координаты CMYK, в зависимости от условий проведения процесса, могут давать разные цвета.

Эта неоднозначность описания цвета в системе CMYK требует построение конкретного профиля печатного процесса, учитывающего различные условия проведения процесса. Если такой профиль построен правильно, то в условиях, когда цветовой охват оригинала меньше или равен цветовому охвату оттиска, все колориметрические координаты обрабатываемого изображения будут преобразовываться в такие координаты CMYK, которые обеспечат точное воспроизведение координат цвета в печатном оттиске.

Необходимо также иметь в виду, что если цветовой охват репродукции меньше цветового охвата оригинала, то необходимо производить сжатие информации, дополнительно обрабатывая изображение. Законы такого сжатия с целью соблюдения психологической точности рассматривались ранее.

Существуют подпрограммы, которые производят такое сжатие по разным законам в автоматическом режиме.

Работа в системе WYSIWYG

Суть этой системы заключается в том, что на экране монитора отображаем информацию, затем регулируем до желаемого результата. Этот желаемый результат затем однозначно отображается в файле на выходе обрабатывающей станции системы и, соответственно, обрабатывается выводным устройством, то есть, система работает с обратной связью.

Важнейшим условием работы в системе WYSIWYG является точное отображение информации об изображении, и главное – о цвете изображения.

Для этого необходимо правильно откалибровать основной контрольный элемент системы – экранную цветопробу. Поскольку она является основным регулирующим компонентом системы.

Калибровка монитора

Технологическая калибровка монитора состоит из трех этапов:

1. Общая технологическая настройка монитора. Цель – оптимизация условий отображения информации на мониторе.

Что она в себя включает, и что из себя представляет.

Во-первых, необходимо определить белый цвет монитора. Белый цвет – понятие неоднозначное, в частности, белый цвет может иметь цветовую температуру 5000K, 6500K, необходимо выбрать такие условия, чтобы белый цвет экрана монитора соответствовал стандарту цветовой палитры при анализе оригинала, то есть, в данном случае, цветовая температура должна быть 5000К.

Второй этап. Оптимизация динамического диапазона экрана.

Как и всякое устройство, монитор имеет ограниченный динамический диапазон. Его надо максимально использовать. Максимальное использование динамического диапазона приведет к максимальному цветовому охвату изображения на мониторе. Поэтому необходимо выбрать точки, которые имели бы минимально и максимально возможную яркость, но эти точки не должны быть смещены в зону нелинейности, так как тогда часть тонов будет потеряна.

Это достаточно сложно осуществить визуально. Для этой цели служат служебные настройки монитора. На пример, имеется шкала в светлых участках и шкала в темных участках монитора. Нам нужно, чтобы на одной из них 2 поля были светлыми и 2 поля имели градацию, а на другой шкале – 2 поля были темными и 2 имели градацию.

PAGE  4


L  100

– a

+ a

– b

+ b

0

а

– а

З

П

К

Ж

+ b

 b

C

Г

С

З

К

а

 b

а1

а2

b2

b1

B

Bmax

Bmin

I

B

Bmax

Bmin

I


 

А также другие работы, которые могут Вас заинтересовать

36167. SSD (Solid State Drive). Преимущества и недостатки 20.06 KB
  SSD логически эмулирует обычный жёсткий диск HDD и теоретически везде может применяться вместо него. SSD использующие динамическую память DRAM а не флэшпамять часто называются RAMdrive и имеют ограниченное применение например в качестве выделенного диска для файла подкачки ОС. Сердцем SSD является микросхема контроллера которая в первую очередь определяет такие ключевые характеристики SSD как внешний интерфейс быстродействие и энергопотребление. Преимущества и недостатки Преимущества SSD над HDD.
36168. Магнитные головки для записи информации на жесткий диск 112 KB
  Вначале это были монолитные головки. Композитные головки выполнены из феррита на подложке из стекла или твердой керамики и имеют меньшие размеры в сравнении с монолитными. Дальнейшим развитием технологии композитных головок стали так называемые головки MIGтипа MIG Metal In Gap.
36169. Технологии записи на магнитные диски 206 KB
  Домены магнитных материалов используемых в продольной записи располагаются параллельно поверхности носителя. Этот эффект и используется при записи цифровых данных магнитным полем головки изменяющимся в соответствии с сигналом информации. Попытки увеличить поверхностную плотность записи путем уменьшения размеров частиц будут увеличивать отношение размера зоны неопределенности к размеру полезной зоны не в пользу последней и в конце концов неизбежно приведут к так называемому суперпарамагнитному эффекту когда частицы перейдут в однодоменное...
36170. ОПТИЧЕСКИЕ ГОЛОВКИ 260 KB
  Задача эта непростая поскольку большинство оптических элементов адаптировано как правило для работы с излучением только одной длины волны. Вопервых необходимо было обеспечить приемлемое рабочее расстояние объектива при любой длине волны излучения. Вовторых обеспечить компенсацию сферических аберраций – также при любой длине волны излучения. Втретьих обеспечить изменение числовой апертуры объектива в зависимости от длины волны проходящего через него света.
36171. SuperAudioCD 87 KB
  Следует заметить что технология одноразрядного квантования используется сейчас и для преобразования звука в других форматах однако там полученный одноразрядный поток в конце концов всетаки приводится к последовательности многоразрядных отсчетов 16 20 24разрядных и в дальнейшем все операции по формированию потока данных перед записью на носитель производятся уже с ними. Этот слой является носителем данных DSD и считывается оптической головкой с числовой апертурой 06 лучом лазера с длиной волны излучения 650 нм. В процессе...
36172. Варианты формата CD 133 KB
  Такая версия компактдиска появилась в 1985 году и получила название CDROM Read Only Memory – память только для чтения. Поскольку диск CDROM предстояло использовать в составе вычислительных комплексов различной сложности то для него был разработан специальный дисковод легко вписывающийся в архитектуру компьютера. Дополнительное кодирование в CDROM производится до того как данные поступают на кодер CIRC точно такой же как в системе защиты от ошибок формата CDAudio. В формате CDROM эти 24 символа являются обезличенными и могут нести...
36173. ИЗГОТОВЛЕНИЕ BD-ДИСКОВ 401 KB
  Мастеринг BDдисков Существует три основные технологии мастеринга BDдисков: метод PTM иммерсионный метод и метод записи пучком электронов. Системы EBR Electron Beam Recorder использующие для записи пучок электронов наиболее дороги но позволяют получить очень высокое разрешение.1 иллюстрирует процесс формирования дорожки записи. Такая длина волны близка к длине волны излучения газовых лазеров которые применяются для записи оптических дисков в форматах CD и DVD.
36174. Структура минидиска 56.5 KB
  Частота сигнала вобуляции равна 2205 кГц. Эту частоту легко получить путем деления пополам частоты дискретизации звукового сигнала fд = 441 кГц. Кодирование данных DIP производится перед изготовлением диска путем частотной модуляции несущей fн = 2205 кГц бифазным кодом. Модуляция осуществляется с помощью тактовой частоты fт = 6300 Гц которая получается путем деления частоты дискретизации 441 кГц на 7 см.
36175. Записываемые диски 215.5 KB
  Длина волны вобуляции в общем случае равна 5 мкм рис. ФОРМАТ КОДИРОВАНИЯ АДРЕСНЫХ ДАННЫХ ВОБУЛЯЦИЕЙ НАПРАВЛЯЮЩЕЙ ДОРОЖКИ Записываемый диск BDR и перезаписываемый диск BDRE имеют один и тот же формат данных которые содержатся в законе вобуляции направляющей дорожки и формируются еще при изготовлении диска. Кроме того модулируя закон вобуляции можно заносить на диск дополнительные данные необходимые как для идентификации фрагментов записываемого материала так и для идентификации самого диска. Поскольку запись данных всегда выполняется...