29410

МАШИНЫ ПОСТОЯННОГО ТОКА

Доклад

Производство и промышленные технологии

Она состоит из неподвижного статора и вращающегося якоря в машинах переменного тока вращающаяся часть ротор. Коммутация это процесс переключения секций обмотки якоря из одной параллельной ветви в другую и связанные с этим явления. Концы секций припаивают к пластинам коллектора что образует замкнутую обмотку якоря. Коллектор набран из медных пластин клинообразной формы изолированных друг от друга и корпуса и образующих в сборе цилиндр который крепится на валу якоря.

Русский

2013-08-21

56.5 KB

2 чел.

МАШИНЫ ПОСТОЯННОГО ТОКА

Машина постоянного тока обладает свойством обратимости, то есть может работать как в режиме генератора, так и в режиме двигателя. Она состоит из неподвижного статора и вращающегося якоря (в машинах переменного тока вращающаяся часть – ротор). Статор состоит из станины, главных и дополнительных полюсов, подшипниковых щитов и траверсы со щетками. Станина имеет кольцевую форму, изготовляется из стального литья и выполняет функцию магнитопровода. Главные полюсы, выполненные из ферромагнитного материала, служат для создания постоянного во времени и неподвижного в пространстве магнитного поля, они имеют специальную обмотку, называемую обмоткой возбуждения (ОВ). По этой обмотке пропускается постоянный ток (ток возбуждения). В машинах малой мощности для создания поля могут использоваться постоянные магниты.

Дополнительные полюсы устанавливаются между главными и служат для улучшения условий коммутации. Коммутация – это процесс переключения секций обмотки якоря из одной параллельной ветви в другую и связанные с этим явления. При плохой коммутации появляется значительное искрение под щетками, что приводит к обгоранию коллектора.

Подшипниковые щиты закрывают статор с торцов. В них впрессовываются подшипники и укрепляется щеточная траверса со щетками, изготовленными из графита или смеси графита с медью.

Якорь состоит из сердечника, обмотки и коллектора. Сердечник набран из листов электротехнической стали. В пазы сердечника укладывается медная обмотка, состоящая из последовательно и параллельно соединенных секций. Концы секций припаивают к пластинам коллектора, что образует замкнутую обмотку якоря. Коллектор набран из медных пластин клинообразной формы, изолированных друг от друга и корпуса и образующих в сборе цилиндр, который крепится на валу якоря.

На рис. 7.1 изображена схема машины постоянного тока, работающей в режиме двигателя, на которой для упрощения обмотка якоря изображена в виде одной секции (рамки), концы которой припаяны к двум коллекторным пластинам, на которые сверху и снизу установлены щетки. Таким образом, напряжение питания U подается на обмотку якоря (секция) через скользящий контакт, который образует щетка и коллекторная пластина. По мере износа щетка поджимается к коллекторной пластине с помощью пружины.

Рис. 7.1. Конструктивная схема двигателя постоянного тока

У машин постоянного тока существуют различные схемы включения обмотки возбуждения (ОВ) по отношению к обмотке якоря (ОЯ). По этому признаку они делятся:

  •  на машины параллельного возбуждения, у которых обмотка возбуждения (ОВ) включена параллельно обмотке якоря (ОЯ);
  •   машины последовательного возбуждения (последовательное включение ОВ и ОЯ);
  •   машины смешанного возбуждения (одна часть ОВ включается параллельно ОЯ, другая – последовательно).
  •   машины независимого возбуждения (ОВ подключена к независимому источнику питания).

Каждая из перечисленных схем включения ОВ и ОЯ имеет свои свойства.

Принцип действия двигателя постоянного тока

Двигатель работает на принципе выталкивания проводника с током из магнитного поля. Взаимодействие тока и магнитного поля создает силу F, направление которой определяется правилом левой руки. Правило левой руки формулируется так: левую руку располагают так, чтобы силовые линии магнитного поля входили в ладонь, вытянутые пальцы показывали направление тока в проводнике обмотки якоря, а отогнутый палец укажет направление силы. Возникающая пара сил создает вращающий электромагнитный момент МЭМ (рис. 7.3).

Уравнение электромагнитного момента двигателя:

,

где Iя – ток якоря;

Ф – магнитный поток одного полюса;

См – коэффициент момента.

Уравнение электрического состояния цепи якоря.

Уравнение электрического состояния цепи якоря

,

где U – питающее напряжение двигателя;

      Rя – сопротивление обмотки якоря;

Епр – противо-ЭДС


 

А также другие работы, которые могут Вас заинтересовать

49183. Жизнедеятельность М. Вебера. Теория познания и методология 246.2 KB
  Вебере и его трудах несмотря на то что современная социология уже ушла далеко вперед актуальность этой теме не вызывает сомнений. Вопервых потому что как и всякий крупный ученый М. Вебера не только классическую социологическую теорию но и чтото новое современное и апеллирующее к непреложным и неизменным законам по которым живет социум.: Аграрная история древнего мира 1923 сразу поставившие его в ряд наиболее крупных ученых свидетельствуют о том что он усвоил требования исторической школы и умело пользовался...
49184. Понятие марксистской социологии. Диалектический материализм и социология 161.07 KB
  Устами своих основоположников Карла Маркса и Фридриха Энгельса она заявила о себе как о научном истолковании исторического процесса базирующемся на объективных данных исторической экономической социологической и других науках. Марксом и Ф.
49185. Расчет системы автоматического регулирования ГТД для поддержания частоты вращения ГТД 592.8 KB
  Расчет клапана для регулирования подачи топлива. Расчет расходов топлива. Расчет расхода топлива на номинальном режиме работы ГТД. Расчет расхода топлива на максимальном режиме работы ГТД.
49189. КОНСТРУИРОВАНИЕ ОДЕЖДЫ 271.29 KB
  Конструирование одежды Проектирование серии изделий на базе одной конструктивной основы Заключение Список литературы Введение История возникновения одежды уходит далеко в глубь веков к самым ранним ступеням развития человечества. Материалистическая точка зрения связывает происхождение одежды с климатическими условиями а её развитие с...
49190. Расчет прочности рабочей лопатки, диска и определение частоты и формы изгибных колебаний одиночной лопатки и пакета лопаток, связанных бандажом 433.68 KB
  Расчет прочности рабочей лопатки. Расчет прочности лопатки и выбор материала рабочей лопатки. Определение частот и форм колебаний одиночной турбинной лопатки и пакета лопаток связанных бандажом.