29533

Функции нескольких переменных (область определения, частные производные, дифференциал)

Лекция

Математика и математический анализ

Естественной областью определения функции называется множество точек для координат которых формула имеет смысл. Графиком функции в прямоугольной системе координат называется множество точек пространства с координатами представляющее собой вообще говоря некоторую поверхность в . Линией уровня функции называется линия на плоскости в точках которой функция принимает одно и тоже значение .

Русский

2013-08-21

442 KB

10 чел.

PAGE 1

Практическое занятие:

Тема: Функции нескольких переменных (область определения, частные производные, дифференциал).

Область определения. Линии уровня.

Естественной областью определения функции  называется множество  точек , для координат которых формула имеет смысл. Графиком функции ,  в прямоугольной системе координат , называется множество точек пространства с координатами , , представляющее собой, вообще говоря, некоторую поверхность в . Линией уровня функции  называется линия  на плоскости , в точках которой функция принимает одно и тоже значение .

В задачах  6.1-6.9 найти и изобразить графически область определения  следующих функций:

6.1 .       6.2 .        6.3 .           6.5 .   

6.6 .   6.7 .   6.8 .        6.9 .             

6.19. Построить линии уровня функций:   а) ;   б) ;  в) ;   г) .

Частные производные

  Частную производную обозначают  или . Частные производные вычисляются по обычным правилам дифференцирования  функции одной переменной, в предположении, что все аргументы функции, кроме аргумента , по которому берётся производная, постоянны. Частными производными второго порядка функции  называются частные производные от её частных производных первого порядка. Для функции  частные производные обозначаются:      

, , , , , ,…  или  ,….

В задачах 6.22-6.32 найти частные производные  от следующих функций:

6.22  .   6.23 .   6.24  .     6.25 .        6.26  .   

6.27  .      6.29 .     6.30 .     6.31 .      6.32 .     

6.33  Найти частные производные  от функции:   .                               

В задачах 6.37-6.40 найти указанные частные производные:

6.37 , если .   6.38, если .   6.39,если .

Дифференциал.

Для функции  справедливы формулы: ,     ,

а для функции  - формулы:

,                  .

В задачах 6.41-6.46 найти дифференциалы первого и второго порядков от следующих функций:

6.41 .   6.42 .   6.43 .     6.44 .    6.45 .   

6.47 Найти значение полного дифференциала функции   при

6.48 Найти значение полного дифференциала функции      при

  Первый дифференциал применяют для приближённого вычисления значений функции  в малой окрестности точки , в которой функция дифференцируема, по формуле:. В частности, для функции  по формуле: , где , .

6.49 Вычислить приближенно:

а) ; б) ; в); г); д).

6.50 На сколько приближённо изменятся диагональ и площадь прямоугольника со сторонами , , если первая сторона увеличится на , а вторая уменьшится на ?

6.52 Прямоугольный параллелепипед имеет измерения: , , . На сколько приближённо изменится длина его диагонали, если  увеличится на ,  увеличится на ,  уменьшится на .

ОТВЕТЫ: 6.1 Замкнутый угол, ограниченный лучами  и   6.2 Замкнутый круг    6.3 Часть плоскости вне круга  6.5 Часть плоскости вне параболы    6.6 Часть плоскости вне эллипса    6.7 Часть плоскости внутри гиперболы    6.8 Открытый треугольник с вершинами в точках (0;0); (1;0); (0;1).   6.9 Замкнутая  полоса, ограниченная прямыми     6.19 а) Параллельные прямые; б) концентрические окружности; в) семейство равносторонних гипербол с общими асимптотами ; г) семейство подобных эллипсов.  6.20  а) ;   б) ;    в) ;    г) .  6.21 а) Точка разрыва ; б) все точки прямой ; в) - точка бесконечного разрыва; точки прямой   - устранимые точки разрыва; г) точки окружности . 6.22 , , , , . 6.23  ,  ,  , ,. 6.24 , ,, ,. 6.25 , , , , .   6.26 , , , ,   6.27 ,  , , , .  6.29,,,, . 6.30 ,,, , . 6.31 , ,   , , . 6.32 , , ,,   6.33 , , , .  6.37    6.38   6.39  6.41 ,     6.42    6.43  ,  6.44 ,    6.45 ,   6.47    6.48    6.49 а)  б) в)  г)  д)  6.50 Диагональ уменьшится на ; площадь уменьшится на . 6.52 Уменьшитсяна .   


 

А также другие работы, которые могут Вас заинтересовать

27777. Воспитание 20.32 KB
  Методы воспитания способы взаимосвязанной деятельности воспитателей и воспитанников направленной на решение задач воспитания. Характеризуя методы воспитания нельзя не упомянуть прием воспитания. главный признак основание по которому методы группируются и обособляются В педагогике существует многообразная классификация методов воспитания. Бабанского в основу классификации положена концепция деятельности: Методы формирования сознания: рассказ беседа лекция дискуссия диспут метод примера; Методы организации деятельности и...
27778. Механизмы социализации 18.95 KB
  Существуют различные подходы к рассмотрению механизмов социализации. Американский ученый Ури Бронфенбренер механизмом социализации считает прогрессивную взаимную аккомодацию приспособляемость между активным растущим человеческим существом и изменяющимися условиями в которых оно живет. Мухина рассматривает в качестве механизмов социализации идентификацию и обособление личности а А.
27779. Социальное воспитание 16.66 KB
  Эти условия создаются в ходе взаимодействия индивидуальных и групповых коллективов субъектов в трех взаимосвязанных и в то же время относительно автономных по содержанию формам способам и стилю взаимодействия процессах: организации социального опыта детей подростков юношей их образования и индивидуальной помощи им. Организация социального опыта осуществляется через организацию быта и жизнедеятельности формализованных групп коллективов; организацию взаимодействия членов организации а также обучение ему; стимулирование самодеятельности...
27780. Антон Семенович Макаренко. Воспитание в коллективе и через коллектив 32.2 KB
  Макаренко воспитал в духе идей коммунизма более 3000 молодых граждан Советской страны. Макаренко особенно Педагогическая поэма и Флаги на башнях переведены на многие языки. Велико число последователей Макаренко среди прогрессивных педагогов всего мира.
27781. Господарські првовідносини 106 KB
  Юридичний зміст господарських відносин — це права та обов’язки суб’єктів господарювання, які виникають у них у процесі здійснення зазначеної діяльності.
27782. Педагогика сотрудничества 19.18 KB
  в советской педагогике получает развитие новое направление педагогика сотрудничества система методов приемов обучения и воспитания основанных на принципе гуманизма и творческого подхода к развитию личности. Педагогика сотрудничества базировалась на следующих принципах: обучение как творческое взаимодействие учителя и учащихся; обучение без принуждения; идея трудной цели; идея крупных блоков объединение несколько уроков в блоки; использование опор опорные сигналы схемы детали; самоанализ деятельности коллективный...
27783. И.И. Бецкой (1704–1795) 23.11 KB
  Бецкой 17041795 является заметной личностью в России XVIII в. Для этого дела был привлечен Иван Иванович Бецкой. В Генеральном учреждении о воспитании обоего пола юношества 1764 получившем силу закона Бецкой сформулировал понятие воспитания которое по его словам должно придать известное направление воле и сердцу выработать характер внушить согласное с природой человека здравое чувство нравы и правила искоренить предрассудки. Бецкой перечисляет добродетели и качества принадлежащие к доброму воспитанию: утверждать сердце в...
27784. Социализирующие функции религиозных организаций 18.38 KB
  В социализации человека религия и религиозные организации общности верующих при молитвенных центрах были важнейшим после семьи фактором. Кроме того различные конфессии ведут активную работу по привлечению в свои ряды новых верующих. В процессе социализации верующих религиозные организации реализуют ряд функций. Это осуществляется в процессе коллективных культовых действий и всей жизнедеятельности организаций а также через различные формы контроля в одних конфессиях более в других менее жесткого за соответствием жизни верующих...
27785. Личностно-ориентированные педагогические технологии 15.04 KB
  В педагогике и педагогической психологии до настоящего момента были предприняты различные попытки определить сущность личностноориентированного обучения. Якиманской признание ученика главной действующей фигурой всего образовательного процесса и есть личностноориентированная педагогика. Для выстраивания модели личностноориентированного обучения она считает необходимым различать следующие понятия.