29535

ФНП (производная сложной функции, условные экстремумы, касательная плоскость и нормаль, выпуклость)

Лекция

Математика и математический анализ

Достаточное условие условного экстремума. Пусть - точка возможного условного экстремума функции , т.е. в этой точке выполнены необходимые условия условного экстремума. Тогда, если при всевозможных наборах значений , удовлетворяющих соотношениям () и не равных одновременно нулю:

Русский

2013-08-21

418.5 KB

3 чел.

PAGE 2

Практическое занятие: Тема: ФНП (производная сложной функции, условные экстремумы, касательная плоскость и нормаль, выпуклость).

Для функции  справедливы формулы:   , где ;   ,  где ;

, ,  где , .

6.56 Найти  если: а) ,  где ;     б) ,  где ;

                                        в) ,          где ;        г) ,   где .

6.57 Найти , если    

а) , где ;       б) ,  где .

6.58 Найти  и , если: а) ,   где ;      б) ,       где ;

                                               в) ,   где ;                        г) ,   где .

6.59 Найти ,, если: а), где ; б)где .

6.60 Найти , если: а)  где ;  б)  где .

6.61 Показать, что следующие функции удовлетворяют данным уравнениям:

а) ,   ;                                                     б) ,   ;

Некоторые приложения частных производных.

  Уравнение касательной плоскости к поверхности  в точке  имеет вид: ,    а уравнение нормали – вид:  .

  В случае задания поверхности  неявным уравнением :  - уравнение касательной плоскости к поверхности в точке  и  - уравнение нормали.

6.72 Написать уравнения касательной плоскости и нормали в точке  к следующим поверхностям:        а) ;                                            б) ;

                               в) ;                                г)

6.73 Написать уравнения касательной плоскости и нормали в точке  к следующим поверхностям:     а) ;                         б) ;        

                            в) ;                                          г) .

6.74 Для поверхности  найти уравнение касательной плоскости, параллельной плоскости  

  Множество точек  называется выпуклым, если вместе с любыми двумя своими точками ,, оно содержит и отрезок . Матрица  называется матрицей Гессе функции  в точке .

  Дважды дифференцируемая на выпуклом множестве  функция  является на этом множестве: 1) выпуклой вниз, если  при всех ; 2) выпуклой вверх, если  при всех . Если на множестве  матрица Гессе  функции знакопеременна, то  на этом множестве выпуклой не является. Знакоопределённость матрицы Гессе устанавливают, используя критерий Сильвестра знакоопределённости матриц квадратичных форм.

6.76. Исследовать следующие функции на выпуклость:

        а) ;          б) ;          в) ;          г) .

  Задача нахождения условного экстремума сводится к нахождению обычного экстремума функции Лагранжа  ,   где  () –постоянные множители Лагранжа.

  Необходимое условие условного экстремума. Если - точка условного экстремума функции  при наличии уравнений связи  () , то в точке  выполняются условия  .

  Решая данную систему, находят неизвестные координаты точки , в которой возможен условный экстремум и соответствующие ей значения множителей Лагранжа .

  Вопрос о существовании и характере условного экстремума решается на основании изучения (например, с помощью критерия Сильвестра) знака второго дифференциала функции Лагранжа. В частности, для функции  исследуется знак  при условии.

  Достаточное условие условного экстремума. Пусть - точка возможного условного экстремума функции , т.е. в этой точке выполнены необходимые условия условного экстремума. Тогда, если при всевозможных наборах значений , удовлетворяющих соотношениям  () и не равных одновременно нулю:

1) , то в точке  функция  имеет условный максимум; 2) , то в точке  функция имеет условный минимум; 3)  принимает как положительные, так и отрицательные значения, то в точке  функция  не имеет условного экстремума.

    В задачах 6.101-6.108 найти условные экстремумы следующих функций нескольких переменных:

6.101                 при  .              6.102           при   .   

6.103      при   .            6.104             при   .

6.105          при    .                  6.106     при   .

ОТВЕТЫ: 6.56 а) ;  б) ; в) ; г).

6.57 а) .  б)   6.58  а)  ,    

 б) ,   в),   

г),.  6.59 а)    

б) , .  6.60а) б)  

6.72 а); , б); .

в) ; . г) ; . 6.73 а) ; .  б) ;  , в) ; , г) ; .  6.74  6.76 а) Выпукла вниз; б) выпукла вверх; в) невыпукла; г) выпукла вниз. 6.101  6.102  6.103 ,  6.104 ,  6.105   6.106 ,       


 

А также другие работы, которые могут Вас заинтересовать

10961. Нормальный (гауссов) закон распределения 209.39 KB
  Нормальный гауссов закон распределения Нормальный закон распределения закон Гаусса играет исключительно важную роль в теории вероятностей. Это наиболее часто встречающийся на практике закон распределения СВ. Главная особенность выделяющая закон Гаусса состоит в
10962. Показательный (экспоненциальный) закон распределения 102.76 KB
  Показательный экспоненциальный закон распределения В теории массового случайные процессы часто распределены по показательному закону например время обслуживания требования каналом обслуживания. Непрерывная случайная величина имеет показательный экспоненциа
10963. Групи слів за значенням: синоніми, антоніми, омоніми 91.65 KB
  Розширити уявлення учнів про групи слів за значенням; розкрити поняття синонімічні ряди, способи розрізнення омонімів і багатозначних слів, навчити користуватися словниками; вчити п’ятикласників свідомо підходити до розуміння значення і використання слова, добирати синоніми й антоніми, доцільно вживати їх у власному мовленні;
10964. Закон больших чисел центральная предельная теорема 154.21 KB
  Закон больших чисел центральная предельная теорема Свойство устойчивости массовых случайных явлений известно человечеству еще с глубоких времен. В какой бы области оно не проявлялось суть его сводится к следующему: конкретные особенности каждого отдельного случайно...
10965. Элементы математической статистики 91.45 KB
  Элементы математической статистики Математическая статистика это наука изучающая методы сбора систематизации и интерпретации числовых случайных данных. В этом определении интерпретация и систематизация данных рассматривается как существенный аспект. Главна
10966. Статистическая (эмпирическая) функция распределения 115.14 KB
  Статистическая эмпирическая функция распределения Статистическим распределением выборки называют перечень вариант и соответствующих им частот или относительных частот частостей. В теории вероятностей под распределением понимают соответствие между возможными з...
10967. Интервалное оценивание 150.45 KB
  Интервалное оценивание Ранее мы обсудили использование выборочных значений в качестве оценок параметров случайных величин. Однако такие процедуры дают только точечные оценки интересующих нас параметров и не позволяют судить о степени близости выборочных значений к о...
10968. Интервальная оценка выборочной дисперсии 71.39 KB
  Интервальная оценка выборочной дисперсии Доверительный интервал для оценки дисперсии по выборочной дисперсии для СВ строится аналогичным образом. Естественно что в качестве математического ожидания и дисперсии гауссовой СВ мы возьмем их несмещённые и эффективные о
10969. Статистические критерии Что такое критерий значимости? 236.79 KB
  Статистические критерии Что такое критерий значимости Прежде чем перейти к рассмотрению понятия статистической гипотезы сформулируем так называемый принцип практической уверенности лежащий в основе применения выводов и рекомендаций полученных с помощью теории ...