2977

Виды твердых растворов

Практическая работа

Физика

Опишите виды твердых растворов. Приведите примеры. Дайте определение твердости. Какими методами измеряют твердость металлов и сплавов? Опишите их. Вычертите диаграмму состояния железо-карбид железа, укажите структурные составляющ...

Русский

2012-10-22

227.09 KB

372 чел.

Вариант 3

1. Опишите виды твердых растворов. Приведите примеры.

2. Дайте определение твердости. Какими методами измеряют твердость металлов и сплавов? Опишите их.

3. Вычертите диаграмму состояния железо-карбид железа, укажите структурные со-ставляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 2,2% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?

4. Вычертите диаграмму изотермического превращения аустенита для стали У8. Нане-сите на нее кривую режима изотермической обработки, обеспечивающей получение твердости 150 НВ. Укажите, как этот режим называется и какая структура получается в данном случае.

5. С помощью диаграммы состояния железо-цементит обоснуйте выбор режима термической обработки, применяемой для устранения цементитной сетки в заэвтектоидной стали. Дайте определение выбранного режима обработки и опишите превращения, которые происходят при нагреве и охлаждении.

1. Опишите виды твердых растворов. Приведите примеры.

Твердыми растворами называют фазы, в которых один из компонентов сплава сохраняет свою кристаллическую решетку, а атомы других (или другого) компонентов располагаются в решетке первого компонента (растворителя), изменяя ее размеры (периоды). Таким образом, твердый раствор, со-стоящий из двух или нескольких компонентов, имеет один тип решетки и представляет собой одну фазу.

Существуют твердые растворы внедрения и твердые растворы замещения. При образовании твердых растворов внедрения атомы растворенного компонента B размещаются между атомами растворителя A в его кристаллической решетке. При образовании твердых растворов замещения атомы растворенного компонента B замещают часть атомов растворителя (компонент A) в его кристаллической решетке.

Рисунок 1 – Твердые растворы: а – замещения, б – внедрения

Поскольку размеры растворенных атомов отличаются от размеров атомов растворителя, то образование твердого раствора сопровождается искажением кристаллической решетки растворителя.
 

Рисунок 2 – Искажения кристаллической решетки в твердых растворах замещения:

а – атом растворенного компонента больше атома растворителя
б – атом растворенного компонента меньше атома растворителя

Твердые растворы замещения могут быть с ограниченной и неограниченной растворимостью. В твердых растворах с ограниченной растворимостью концентрация растворенного компонента возможна до определенных пределов.

В твердых растворах с неограниченной растворимостью возможна любая концентрация растворенного компонента (от 0 до 100 %). Твердые растворы с неограниченной растворимостью образуются при соблюдении следующих условий: 1) у компонентов должны быть однотипные кристаллические решетки; 2) различие в атомных радиусах компонентов не должно превышать для сплавов на основе железа 9%, а для сплавов на основе меди 15%; 3) компоненты должны обладать близостью физико-химических свойств. Однако соблюдение этих свойств не всегда приводит к образованию твердых растворов замещения с неограниченной растворимостью. На практике, как правило, образуются твердые растворы с ограниченной растворимостью.

Твердые растворы внедрения могут быть только с ограниченной концентрации, поскольку число пор в решетке ограничено, а атомы основного компонента сохраняются в узлах решетки.

Твердые растворы замещения с неограниченной растворимостью на основе компонентов: Ag и Au, Ni и Cu, Mo и W, V и Ti, и т.д.

Твердые растворы замещения с ограниченной растворимостью на основе компонентов: Al и Cu, Cu и Zn, и т.д.

Твердые растворы внедрения: при растворении в металлах неметаллических элементов, как углерод, бор, азот и кислород. Например: Fe и С.

2. Дайте определение твердости. Какими методами измеряют твердость металлов и сплавов? Опишите их.

Твердость – это сопротивление материала проникновению в его поверхность стандартного тела (индентора), не деформирующегося при испытании.

Широкое распространение объясняется тем, что не требуются специальные образцы.

Это неразрушающий метод контроля. Основной метод оценки качества термической обработке изделия. О твердости судят либо по глубине проникновения индентора (метод Роквелла), либо по величине отпечатка от вдавливания (методы Бринелля, Виккерса, микротвердости).

Во всех случаях происходит пластическая деформация материала. Чем больше сопротивление материала пластической деформации, тем выше твердость.

Наибольшее распространение получили методы Бринелля, Роквелла, Виккерса и микротвердости. Схемы испытаний представлены на рисунке 3.


 


Рисунок 3 — Схемы определения твердости:

а – по Бринеллю; б – по Роквеллу; в – по Виккерсу

Твердость по Бринеллю

Испытание проводят на твердомере Бринелля (рисунок 3 а).

В качестве индентора используется стальной закаленный шарик диаметром D 2,5; 5; 10 мм, в зависимости от толщины изделия.

Нагрузка Р, в зависимости от диаметра шарика и измеряемой твердости: для термически обработанной стали и чугуна – P=30D2, литой бронзы и латуни – P=10D2, алюминия и других очень мягких металлов – P=2,5D2.

Продолжительность выдержки : для стали и чугуна – 10 с, для латуни и бронзы – 30 с.

Полученный отпечаток измеряется в двух направлениях при помощи лупы Бринелля.

Твердость определяется как отношение приложенной нагрузки Р к сферической поверхности отпечатка F:

 


Стандартными условиями являются D = 10 мм; Р = 3000 кгс; = 10 с. В этом случае твердость по Бринеллю обозначается НВ 250, в других случаях указываются условия: НВ D / P / τ, НВ 5/250/30 – 80.

Метод Роквелла

Основан на вдавливании в поверхность наконечника под определенной нагрузкой (рисунок 3 б)

Индентор для мягких материалов (до НВ 230) – стальной шарик диаметром 1/16” (Ø1,6 мм), для более твердых материалов – конус алмазный.

Нагружение осуществляется в два этапа. Сначала прикладывается предварительная нагрузка P0 (10 ктс) для плотного соприкосновения наконечника с образцом. Затем прикладывается основная нагрузка Р1, в течение некоторого времени действует общая рабочая нагрузка Р. После снятия основной нагрузки определяют значение твердости по глубине остаточного вдавливания наконечника h под нагрузкой P0.
В зависимости от природы материала используют три шкалы твердости (таблица 1)

Таблица 1 — Шкалы для определения твердости по Роквеллу

Шкала

Обозначение

Индентор

Нагрузка, кг

Область применения

 P0

 P1

 P2

A

HRA

 Алмазный конус

10

50

60

Для особо твердых материалов

B

HRB

Стальной закаленный шарик

10

90

100

Для относительно мягких материалов

C

HRC

 Алмазный конус

10

140

150

Для относительно твердых материалов

Метод Виккерса

Твердость определяется по величине отпечатка (рисунок 3 в).

В качестве индентора используется алмазная четырехгранная пирамида с углом при вершине 136°.

Твердость рассчитывается как отношение приложенной нагрузки P к площади поверхности отпечатка F:

 


Нагрузка Р составляет 5…100 кгс. Диагональ отпечатка d измеряется при помощи микроскопа, установленного на приборе.

Преимущество данного способа в том, что можно измерять твердость любых материалов, тонкие изделия, поверхностные слои. Высокая точность и чувствительность метода.

Способ микротвердости – для определения твердости отдельных структурных составляющих и фаз сплава, очень тонких поверхностных слоев (сотые доли миллиметра).

Аналогичен способу Виккерса. Индентор – пирамида меньших размеров, нагрузки при вдавливании Р составляют 5…500 кгс:

 

Метод царапания

Алмазным конусом, пирамидой или шариком наносится царапина, которая является мерой. При нанесении царапин на другие материалы и сравнении их с мерой судят о твердости материала.

Можно нанести царапину шириной 10 мм под действием определенной нагрузки. Наблюдают за величиной нагрузки, которая дает эту ширину.

Динамический метод (по Шору)

Шарик бросают на поверхность с заданной высоты, он отскакивает на определенную величину. Чем больше величина отскока, тем тверже материал.

В результате проведения динамических испытаний на ударный изгиб специальных образцов с надрезом (ГОСТ 9454) оценивается вязкость материалов и устанавливается их склонность к переходу из вязкого состояния в хрупкое.

Вязкость – способность материала поглощать механическую энергию внешних сил за счет пластической деформации.

Является энергетической характеристикой материала, выражается в единицах работы. Вязкость металлов и сплавов определяется их химическим составом, термической обработкой и другими внутренними факторами.

Также вязкость зависит от условий, в которых работает металл (температуры, скорости нагружения, наличия концентраторов напряжения).

3. Вычертите диаграмму состояния железо – карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 2,2% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?

Первичная кристаллизация сплавов системы железо-углерод начинается по достижении температур, соответствующих линии ABCD (линии ликвидус), и заканчивается при температурах, образующих линию AHJECF (линию солидус).

При кристаллизации сплавов по линии АВ из жидкого раствора выделяются кристаллы твердого раствора углерода в α-железе (δ-раствор). Процесс кристаллизации сплавов с содержанием углерода до 0,1 % заканчивается по линии АН с образованием α (δ)-твердого раствора. На линии HJB протекает перитектическое превращение, в результате которого образуется твердый раствор углерода в γ-железе, т. е. аустенит. Процесс первичной кристаллизации сталей заканчивается по линии AHJE.

При температурах, соответствующих линии ВС, из жидкого раствора кристаллизуется аустенит. В сплавах, содержащих от 4,3% до 6,67% углерода, при температурах, соответствующих линии CD, начинают выделяться кристаллы цементита первичного. Цементит, кристаллизующийся из жидкой фазы, называется первичным. B точке С при температуре 1147°С и концентрации углерода в жидком растворе 4,3% образуется эвтектика, которая называется ледебуритом. Эвтектическое превращение с образованием ледебурита можно записать формулой ЖР4,3 Л[А2,146,67]. Процесс первичной кристаллизации чугунов заканчивается по линии ECF образованием ледебурита.

Таким образом, структура чугунов ниже 1147°С будет: доэвтектических – аустенит+ледебурит, эвтектических – ледебурит и заэвтектических – цементит (первичный)+ледебурит.

Превращения, происходящие в твердом состоянии, называются вторичной кристаллизацией. Они связаны с переходом при охлаждении γ-железа в α-железо и распадом аустенита.

Линия GS соответствует температурам начала превращения аустенита в феррит. Ниже линии GS сплавы состоят из феррита и аустенита.

Линия ЕS показывает температуры начала выделения цементита из аустенита вследствие уменьшения растворимости углерода в аустените с понижением температуры. Цементит, выделяющийся из аустенита, называется вторичным цементитом.

В точке S при температуре 727°С и концентрации углерода в аустените 0,8% образуется эвтектоидная смесь состоящая из феррита и цементита, которая называется перлитом. Перлит получается в результате одновременного выпадения из аустенита частиц феррита и цементита. Процесс превращения аустенита в перлит можно записать формулой А0,8 П[Ф0,036,67].

Линия PQ показывает на уменьшение растворимости углерода в феррите при охлаждении и выделении цементита, который называется третичным цементитом.

Следовательно, сплавы, содержащие менее 0,008% углерода (точка Q), являются однофазными и имеют структуру чистого феррита, а сплавы, содержащие углерод от 0,008 до 0,03% – структуру феррит+цементит третичный и называются техническим железом.

Доэвтектоидные стали при температуре ниже 727ºС имеют структуру феррит+перлит и заэвтектоидные – перлит+цементит вторичный в виде сетки по границам зерен.

В доэвтектических чугунах в интервале температур 1147–727ºС при охлаждении из аустенита выделяется цементит вторичный, вследствие уменьшения растворимости углерода(линия ES). По достижении температуры 727ºС (линия PSK) аустенит, обедненный углеродом до 0,8% (точка S), превращаясь в перлит. Таким образом, после окончательного охлаждения структура доэвтектических чугунов состоит из перлита, цементита вторичного и ледебурита превращенного (перлит+цементит).

Структура эвтектических чугунов при температурах ниже 727ºС состоит из ледебурита превращенного. Заэвтектический чугун при температурах ниже 727ºС состоит из ледебурита превращенного и цементита первичного.


                                                            а)                                                                            б)

Рисунок 4: а-диаграмма железо-цементит, б-кривая охлаждения для сплава, содержащего 2,2% углерода

Правило фаз устанавливает зависимость между числом степеней свободы, числом компонентов и числом фаз и выражается уравнением:

C = K + 1 – Ф,

где С – число степеней свободы системы;

       К – число компонентов, образующих систему;

      1 – число внешних факторов (внешним фактором считаем только температуру, так как давление за исключением очень высокого мало влияет на фазовое равновесие сплавов в твердом и жидком состояниях);

       Ф – число фаз, находящихся в равновесии.

Сплав железа с углеродом, содержащий 2,2% С, называется доэвтектический чугун. Его структура при комнатной температуре – Перлит + Цементит + Ледебурит.

4. Вычертите диаграмму изотермического превращения аустенита для стали У8. Нанесите на нее кривую режима изотермической обработки, обеспечивающей получение твердости 150 HB. Укажите, как этот режим называется, опишите сущность превращений и какая структура получается в данном случае.

Изотермической обработкой, достаточной для получения твердости НВ = 150 для стали У8, является изотермический отжиг (рисунок 5). Структура после отжига – крупнопластинчатый перлит. При изотермическом отжиге сталь У8 нагревают до температуры на 30-50°С выше точки Ас1 (Ас1 = 730°С) и после выдержки охлаждают до температуры 650-680°С. Структура после отжига – крупнопластинчатый перлит.

Рисунок 5 – Диаграмма изотермического превращения аустенита стали У8

Перлитное превращение переохлажденного аустенита протекает при температурах Ar1 = 500ºC. В процессе превращения происходит полиморфное γ→α-превращение и диффузионное перераспределение углерода в аустените, что приводит к образованию ферритно-цементитной структуры: А→Ф + Fe3C = Перлит.

Аустенит, практически однородный по концентрации углерода, распадается с образованием феррита и цементита, содержащего 6,67%С, т.е. состоит из двух фаз, имеющих различную концентрацию углерода. Ведущей, в первую очередь возникающей фазой при этом является карбид (цементит). Его зародыши, как правило, образуются на границах зерен аустенита.

В результате роста частиц этого карбида прилегающий к нему объем аустенита обедняется углеродом, снижает свою устойчивость и испытывает полиморфное γ→α-превращение. При этом кристаллики феррита зарождаются на границе с цементитом, который облегчает этот процесс.

Последующий рост ферритных пластинок ведет к обогащению окружающего аустенита углеродом, что затрудняет дальнейшее развитие γ→α-превращения. В обогащенном таким образом углеродом аустените зарождаются новые и растут ранее возникшие пластинки цементита. Вследствие этих процессов образования и роста частиц карбидов вновь создаются условия для возникновения новых и роста имеющихся кристалликов (пластинок) феррита. В результате происходит колониальный (совместный) рост кристалликов феррита и цементита, образующих перлитную колонию.

5. С помощью диаграммы состояния железо-цементит обоснуйте выбор режима термической обработки, применяемой для устранения цементитной сетки в заэвтектоидной стали. Дайте определение выбранного режима термической обработки и опишите превращения, которые происходят при нагреве и охлаждении.

Для устранения грубой сетки вторичного цементита заэвтектоидные стали подвергают нормализации.

Нормализацией называется нагрев доэвтектоидной стали до температуры выше Ас3, а заэвтектоидной – выше Аcm на 40-50°С с последующим охлаждением на воздухе.

При температуре нагрева заэвтектоидной стали выше Аcm на 40-50°С имеем структуру аустенита (100%). При снижении температуры до Аrm начинают появляться первые зерна цементита. При дальнейшем снижении температуры до Аr1 из аустенита будут образовываться только зерна цементита, а содержание углерода в остающемся аустените будет уменьшаться и при температуре Аr1 достигнет 0,8%. Ускоренное охлаждение на воздухе способствует тому, что цементит не успевает образовать грубую сетку, понижающую свойства стали. При снижении температуры ниже Аr1 из аустенита будет образовываться перлит.

Заэвтектоидная сталь после нормализации имеет структуру перлита и цементита.


 

 Рисунок 6 – Диаграмма железо-цементит


 

А также другие работы, которые могут Вас заинтересовать

81508. Строение хроматина и хромосомы 106.36 KB
  Основу хромосомы составляет линейная не замкнутая в кольцо макромолекула дезоксирибонуклеиновой кислоты ДНК значительной длины например в молекулах ДНК хромосом человека насчитывается от 50 до 245 миллионов пар азотистых оснований. В интерфазе хроматин не конденсирован но и в это время его нити представляют собой комплекс из ДНК и белков. Макромолекула ДНК обвивает октомеры структуры состоящую из восьми белковых глобул гистоновых белков H2 H2B H3 и H4 образуя структуры названные нуклеосомами. В ранней интерфазе фаза G1 основу...
81509. Распад нуклеиновых кислот. Нуклеазы пищеварительного тракта и тканей. Распад пуриновых нуклеотидов 207.42 KB
  Распад пуриновых нуклеотидов. Далее полинуклеотидная часть этих молекул гидролизуется в кишечнике до мононуклеотидов. В расщеплении нуклеиновых кислот принимают участие ДНКазы и РНКазы панкреатического сока которые будучи эндонуклеазами гидролизуют макромолекулы до олигонуклеотидов. Последние под действием фосфодиэстераз панкреатической железы расщепляются до смеси 3\' и 5\'мононуклеотидов.
81510. Представление о биосинтезе пуриновых нуклеотидов; начальные стадии биосинтеза (от рибозо-5-фосфата до 5-фосфорибозиламина) 183.42 KB
  Сборка пуринового гетероцикла осуществляется на остатке рибозо5фосфата при участии различных доноров углерода и азота: Фосфорибозилдифосфат ФРДФ или фосфорибозилпирофосфат ФРПФ занимает центральное место в синтезе как пуриновых так и пиримидиновых нуклеотидов Он образуется за счёт переноса βγпирофосфатного остатка АТФ на рибозо5фосфат в реакции катализируемой ФРДФсинтетазой. Источниками рибозо5фосфата могут быть: пентозофосфатный путь превращения глюкозы или катаболизм нуклеозидов в ходе которого под действием...
81511. Инозиновая кислота как предшественник адениловой и гуаниловой кислот 253.09 KB
  Первая специфическая реакция образования пуриновых нуклеотидов - перенос амидной группы Глн на ФРДФ с образованием 5-фосфорибозил-1 -амина Эту реакцию катализирует фермент амидофосфорибозилтрансфераза. При этом формируется β-N-гликозидная связь. Затем к аминогруппе 5-фосфорибозил-1-амина присоединяются остаток глицина
81512. Представление о распаде и биосинтезе пиримидиновых нуклеотидов 190 KB
  Образование дигидрооротата. Карбамоилфосфат использующийся на образование пирймидиновых нуклеотидов является продуктом полифункционального фермента который наряду с активностью КФС II содержит каталитические центры аспартаттранскарбамоилазы и дигидрооротазы. Объединение первых трёх ферментов метаболического пути в единый полифункциональный комплекс позволяет использовать почти весь синтезированный в первой реакции карбамоилфосфат на взаимодействие с аспартатом и образование карбамоиласпартата от которого отщепляется вода и образуется...
81513. Нарушения обмена нуклеотидов. Подагра; применение аллопуринола для лечения подагры. Ксантинурия. Оротацидурия 120.73 KB
  Когда в плазме крови концентрация мочевой кислоты превышает норму то возникает гиперурикемия. Вследствие гиперурикемии может развиться подагра заболевание при котором кристаллы мочевой кислоты и уратов откладываются в суставных хрящах синовиальной оболочке подкожной клетчатке с образованием подагрических узлов или тофусов. Поскольку лейкоциты фагоцитируют кристаллы уратов то причиной воспаления является разрушение лизосомальных мембран лейкоцитов кристаллами мочевой кислоты. Это вызывает ингибирование запасных путей спасения усиление...
81514. Биосинтез дезоксирибонуклеотидов. Применение ингибиторов синтеза дезоксирибонуклеотидов для лечения злокачественных опухолей 178.43 KB
  Синтез дезоксирибонуклеотидов идёт с заметной скоростью только в тех клетках, которые вступают в S-фазу клеточного цикла и готовятся к синтезу ДНК и делению. В покоящихся клетках дезоксинуклеотиды практически отсутствуют. Все дезоксинуклеотиды, кроме тимидиловых, образуются из рибонуклеотидов путём прямого восстановления ОН-группы у второго углеродного атома рибозы в составе рибонуклеозиддифосфатов до дезоксирибозы
81515. Биосинтез ДНК, субстраты, источники энергии, матрица, ферменты. Понятие о репликативном комплексе. Этапы репликации 154.76 KB
  Этапы биосинтеза ДНК. Предложен ряд моделей механизма биосинтеза ДНК с участием указанных ранее ферментов и белковых факторов однако детали некоторых этапов этого синтеза еще не выяснены. Основываясь главным образом на данных полученных в опытах in vitro предполагают что условно механизм синтеза ДНК у Е.
81516. Синтез ДНК и фазы клеточного деления. Роль циклинов и циклинзависимых протеиназ в продвижении клетки по клеточному циклу 163.63 KB
  Роль циклинов и циклинзависимых протеиназ в продвижении клетки по клеточному циклу. Все фазы клеточного цикла G1 S G2 M могут различаться по длительности но в особенности это касается фазы G1 длительность которой может быть равна практически нулю или быть столь продолжительной что может казаться будто клетки вообще прекратили деление. В этом случае говорят что клетки находятся в состоянии покоя фаза G0. Клетки эпителия кишечника делятся на протяжении всей жизни человека но даже у этих быстропролиферирующих клеток подготовка к...