29826

Математическое описание дискретных СУ (ДСУ)

Лекция

Математика и математический анализ

Передаточные функции и динамические характеристики ДСУ Импульсная характеристика ДСУ Рекурсивный и нерекурсивный алгоритмы обработки. Будем рассматривать полностью дискретную СУ рис. Xkk=0m yk k=0n рис.2 q=0 i=1 Данный алгоритм принято изображать в виде структурной схемы рис.

Русский

2013-08-21

373 KB

3 чел.

15

Лекция 2

Математическое описание дискретных СУ (ДСУ)

  1.  Разностное уравнение ДСУ. Структурная схема алгоритма.
    1.  Передаточные функции и динамические характеристики ДСУ
    2.  Импульсная характеристика ДСУ
    3.  Рекурсивный и нерекурсивный алгоритмы обработки.
    4.  Передаточная функция вычислительного устройства цифрового регулятора.
    5.  Типовые дискретные алгоритмы и структурные схемы цифровых регуляторов

  1.  Разностное уравнение ДСУ. Структурная схема алгоритма.

Будем рассматривать полностью дискретную СУ (рис. 2.1), которая не содержит элементов, работающих в непрерывном времени.

X(k),k=0,m                   y(k), k=0,n

                                                              рис. 2.1

Процессы в такой системе описываются разностными уравнениями различного порядка.  В общем виде разностное уравнение n-го порядка записывается так:

 n                       m

ai*y(k-i)= bq*x(k-q)  , n>m                                                                                (2.1)

i=0                    q=0

Уравнение 1 порядка:

ao*y(k)+a1*y(k-1)=bo*x(k)+b1*x(k-1)                                             

Уравнение 2 порядка:

ao*y(k)+a1*y(k-1)+a2*y(k-2)=bo*x(k)+b1*x(k-1)+b2*x(k-2)    

 

Данный алгоритм представляет  собой алгоритм свертки двух последовательностей. Обычно такой алгоритм записывается относительно старшего номера при y .

        m                           n

y(k)=bq*x(k-q) - ai*y(k-i)                                                                                   (2.2)

          q=0                         i=1

Данный алгоритм принято изображать в виде структурной схемы (рис. 2.2).                                                                          Опр. Графическая модель разностного уравнения называется структурной                                                                                    схемой.

     x(k)                                                                                                       y(k)          

           bo

   

          b1                                  -a1

          b2                                                            -a2

…                                                …

          bn                                                            -am

                                          рис. 2.2

Выводы: 

 1. Для вычисления выходной дискретной последовательности y(k)    необходимо задать входную последовательность x(k) и алгоритм обработки.

 2. При вычислении дискретной свертки используются умножители, сумматоры и линии задержки.

3. Если в отсчете y(k) участвуют предыдущие отсчеты y , то такой алгоритм является алгоритмом обработки с обратной связью, при этом, если коэффициенты при y в алгоритме отрицательны, то это алгоритм с отрицательной обратной связью (оос), если положительны – то с положительной обратной связью (пос).

                       

2.2. Передаточные функции и динамические характеристики ДСУ

Рассмотренный ранее алгоритм  работал с числовыми последовательностями. Каждый отсчет представляет собой некоторое число, поэтому алгоритм удобен для расчетов на ЭВМ. Для получения динамических характеристик вычислительного устройства (или ДСУ) необходимо перейти  от числовых последовательностей к -импульсным последовательностям, содержащим непрерывную переменную  t.   Получим алгоритм дискретной свертки    –импульсной последовательности.  Для этого представим:

             

xт(t)= x(k*T)* (t-k*T)                                                                                           (2.3)

           k=0

Аналогично представим:

             

yт(t)= y(k*T)* (t-k*T)                                                                                           (2.4)

           k=0

Тогда алгоритм дискретной свертки можно записать в следующем виде:

yт(t)+ a1*yт(t-T)+a2*yт(t-2*T)+…=bo*xт(t)+b1*xт(t-T)+…                                          (2.5)

или

                              

yт(t)= bk*x(t-k*T) -  ak*yт(t-k*T)                                                                        (2.5*)

             k=0                             k=1  

Выражение (2.5*) – алгоритм дискретной свертки –импульсной последовательности. Его можно также изобразить в виде структурной схемы. Она будет аналогичной схеме на рис.2.2, только вместо x(k) будет xт(t-k*T), на выходе вместо y(k) – yт(t).

В этом алгоритме присутствует непрерывная переменная t , поэтому для определения динамических характеристик ДСУ можем использовать интегральные преобразования классической математики.

Определим ОПФ:

                                                                                        -p*T

Lxт(t)=Xт(p) ;   L xт(t-T)=Xт(p)* e                      

                                                              

                                                                -p*k*T

Lyт(t)=Yт(p)          ; Lyт(t-k*T)=Yт(p)*e

Возьмем преобразование  Лапласа от правой и левой  частей (2.5) и вынесем общие множители:

                              -p*T          –p*2*T                                           -p*T           -p*2*T

Yт(p)*(1+a1*e  +a2*e      +…)=Xт(p)(bo+b1*e   +b2*e      +…)     

По определению:                                                         -p*k*T

                                                              -p*T              -p*2*T                        bk*e

             Yт(p)        bo+b1*e     +b2*e      +…        k=0

Wт(p) =             =                                             =

             Xт(p)                 -p*T              -p*2*T                                       -p*k*T

                           1+a1*e     +a2*e      +…           1+ ak*e

                                                                               k=1

                             -p*k*T

                                 bk*e                                                   Xт(p)                       Yт(p)

                  k=0                                                

Wт(p) =                                         (2.6)

                              -p*k*T                                                                                    рис. 2.3

                1  ak*e

                      k=1

 

Если проанализировать  выражение (2.6), то видим, что в знаменателе стоит выражение 1+ …, характерное для систем с обратной связью, при этом «+» - для систем с оос., а «-» - для систем с пос.

Так как все характеристики ДСУ связаны друг с другом, то, зная ОПФ, можем определить КПФ и СПФ и временные характеристики системы  (рис. 2.3).

Определим КПФ, АЧХ, ФЧХ:

                                                    -p*k*T

                                                                  bk*e

                                         k=0

Wт(jw) = Wт(p)         =                                                                                             (2.7)                                                     

                        p=jw                         -p*k*T

                                        1  ak*e

                                              k=1

Wт(w)=Wт(jw)       

т(w)=arg Wт(jw)                                                                                     (2.8)        

Комплексные ОПФ, АЧХ, ФЧХ системы периодичны по частоте с интервалом периодичности             

          2*

wт=

         T

Находим СПФ:

                                                         -k

                                                                           bk*z

                                              k=0

Wт(z) = Wт(p)               =                                                                                        (2.9)                                                     

                          p*T                                  -k

                        e    =z            1  ak*z

                                                    k=1

Зная СПФ, легко построить структурную схему алгоритма обработки без промежуточных вычислений (без записи самого алгоритма обработки). Числитель СПФ показывает алгоритм обработки входного сигнала, знаменатель – алгоритм обработки выходного сигнала (рис. 2.4).

xт(t) 

                       bo                                                                                                             yт(t)

                      b1                               -a1

…                                                  …

                         рис. 2.4

  1.  Импульсная характеристика ДСУ

Для ДСУ удобной временной характеристикой является импульсная характеристика. Ее принято записывать также как и дискретный сигнал:

        

gт(t)=gk* (t-k*T)                                                                                                (2.10)

       k=0

 Импульсная характеристика может быть представлена в виде z-преобразования:

                              -k

Zgт(t)=Gт(z)=gk*z                                                                                           (2.11)

                                  k=0

Выводы:  

  1.  Импульсная характеристика дискретной системы представляется в виде своих отсчетов.
  2.  z-преобразование импульсной характеристики физически реализуемой системы содержит переменную z в отрицательных степенях .

Определим связь импульсной характеристики с другими характеристиками системы:

Wт(z)=Gт(z)

           -k

       bk*z                         

   k=0                                                              -k               -2*k

                               =  go+g1*z  + g2*z    +…                                                      (2.12)                                                     

                  -k

 1+  ak*z

      k=1

Выводы:

  1.  Если полином числителя СПФ делится на полином знаменателя без остатка, то СПФ Wт(z) будет содержать ряд с конечным числом членов

                N             -k

Wт(z)=gk*z

         k=0

Такие системы называются системами с конечной импульсной характеристикой (КИХ). Они обрабатывают сигнал без обратной связи.

  1.  Если полином числителя СПФ не делится на полином знаменателя, то СПФ будет иметь бесконечное число членов ряда

                        -k

Wт(z)=gk*z

         k=0

Такие системы называются системами с бесконечной импульсной характеристикой (БИХ). Они обрабатывают сигнал с обратной связью.

3. Если характеристики ДСУ   Wт(z), Wт(p),Wт(jw) выражаются в виде ряда, то коэффициентами ряда являются отсчеты импульсной характеристики.

4.Импульсную характеристику ДСУ можно определить экспериментально либо рассчитать. Для этого необходимо на вход системы подать единичный импульс. Тогда дискретная последовательность на выходе yт(t)=gт(t).

  1.  Рекурсивный и нерекурсивный алгоритмы обработки.

Опр.  Нерекурсивным алгоритмом  обработки называется алгоритм дискретной обработки без обратной связи. При этом ИХ может быть конечной или бесконечной. (рис. 2.5)

СПФ:

                   (N)      -k            Yт(z)

Wт(z)=gk*z      =                                                                                                (2.13)

               k=0                         Xт(z)

xт(t)

                      go                                              yт(t)=go*xт(t)+g1*xт(t-T)+…

                      g1

                       рис. 2.5

Опр. Рекурсивным алгоритмом обработки называется алгоритм обработки дискретного сигнала с обратной связью.

                            -k

                               bk*z                         

                    k=0                                      Yт(z)         

Wт(z)  =                                =                                                                             (2.14)                                                                               

                                         -k                        Xт(z)

                1+  ak*z

                      k=1

Структурная схема алгоритма представлена на рис.2.4

  1.  Передаточная функция вычислительного устройства

                                 цифрового регулятора.

Реальные СУ наряду с дискретными элементами содержат элементы, работающие в непрерывном времени.

Рассмотрим структурные схемы следящих СУ:

Непрерывная  СУ :

U(t)                 (t)                      (t)                                  y(t)

              

                -

                                     рис. 2.6

                                        

Дискретная СУ:                                                                 

 U(t)               (t)                  т(t)               т(t)                   (t)                        y(t)              

             -

                                элементы дискретного действия                          непр. элемент

Wф(p) – ОПФ формирователя непрерывного сигнала

                                        рис. 2.7

Импульсная СУ:

   U(t)                 (t)                 и(t)                и(t)                 (t)                          y(t)

                

                     -                 дискретные     элементы                      непр.      элементы

                                                    рис. 2.8

Цифровая СУ:

U(t)              (t)               ц(t)               ц(t)               (t)                        y(t)

          -

           -

                                                     рис. 2.9

Во всех системах осуществляется преобразование: непрерывный сигнал  в дискретный, обработка дискретного сигнала и обратное преобразование дискретного сигнала в непрерывный.

Таким образом, процесс на выходе дискретного элемента представляет собой результат математических или логических преобразований информации по предписанной программе. Дискретный элемент состоит при этом из преобразователя (преобразует непрерывный сигнал в дискретный, импульсный, цифровой), вычислительного устройства и формирующего преобразователя, преобразовывающего дискретный, импульсный, цифровой сигнал в непрерывный.

При дальнейшем рассмотрении в качестве дискретного элемента будем рассматривать элемент, представляющий собой следующую структуру (рис. 2.10):

W(p) - -модулятор       ;  Wву(p) – вычислительное устройство

Wф(p) - формирователь

(t)                                                                                (t)

                       цифровой регулятор  

                                     рис. 2.10

Тогда передаточная функцмя цифрового регулятора примет вид:

Wцр(p)=W(p)*Wву(p)*Wф(p)                                                                               (2.15)

Техническая реализация алгоритма обработки осуществляется выбором программы работы вычислительного устройства. В технических системах для реализации алгоритма используются специализированные процессоры. По существу все алгоритмы работы ВУ цифровых регуляторов делятся на 2 класса:

  1.  Регуляторы, реализующие алгоритмы – аналоги непрерывных законов управления.
  2.  Цифровые регуляторы, реализующие специфические законы управления, не имеющие аналогов  в непрерывной области (например, алгоритмы конечной длительности).

Определим Wву(p), реализующего непрерывный закон управления Wp(p). При рассмотрении будем использовать следующие допущения:

  •   Будем пренебрегать ошибками дискретизации и квантования

W(p)*Wф(p)1

                    2)   Будем полагать , что  Wцр(p)=Wp(p)

При этих предположениях:

                Wp(p)

Wву(p)=

             W(p)*Wф(p)

Таким образом нужно определить W(p), Wф(p)  - ?

В качестве модулятора используем простейший вид -  -модулятор, импульсная характеристика которого

        1                                         1

g(t)=         *(t)           W(p)=           

        T                                         T

В качестве формирователя выберем фиксатор нулевого порядка с импульсной характеристикой            gф(t)=1(t)-1(t-T)

g                                                                                                                  -1                                      

                                                   oo        1       1     -p*T      1           -p*T       1 z

                                               Wф(p)=              *e    =       *(1-e    )=

 1                                                            p       p              p                      p

                           

            

            T                  t

Меньшую погрешность дают фиксаторы  большего порядка:

-   фиксатор 1 порядка

     11  1+p*T          -1    2

 Wф=           *  1-z         

         p*T

-   фиксатор 2 порядка

                                   2      2

        22    2+3*p*T+2*p *T               -1   3

Wф =                                 *   1z

                    3       2

               2*p * T

Сравнительные характеристики при приближении фиксаторами различного порядка приведены на рис. 2.11

    Sn

                                                                                        S(t) – приходящий сигнал

                                                                                                         11

                                                                                         S1(t) при  Wф

                                                                                                         22

                                                                                         S2(t) при Wф

                                                           t

                               рис. 2.11

Подставляем найденные W(p) и Wф(p):

                         T*p

Wву(p)= Wp(p)*                                                                                                     (2.16)

                               -1             

                       1 z

Получили ОПФ ВУ в ДСУ с –модулятором и фиксатором нулевого порядка, реализующую закон управления, аналогичный непрерывному закону управления Wp(p). Если в СУ используются другие виды модуляторов и демодуляторов, нужно использовать другие формулы для  ОПФ.

  1.   Алгоритмы и типовые дискретные структурные схемы

                            цифровых регуляторов

На практике наиболее удобно использовать и наибольшее распространение получили типовые непрерывные законы управления: П-, И-, ПИ-законы. Определим дискретные аналоги типовых законов управления: дискретный П-, дискретный И-, дискретный ПИ-законы.

И:

             kp                                                                  1                т(z)

Wp(p)=                   Wву(p)=kp*T*                  =

             p                                                    -1              т(z)

                                                           1z

                      -1

т(z)*(1-z   )=kp*T*т(z)

т(t)-т(t-T)=kp*T*т(t)

т(t)=kp*T*т(t)                                                                                                    (2.17)

Структурная схема  приведена на рис. 2.12:

т(t)                                                   т(t)

             kp*T

                                

                                -

      

рис. 2.12

П :

         Wp(p)=kp

                             T*p         используем               т(z)

          Wву(p)=kp*            =   допущение  1)    =kp=                                                        (2.18)

                                         -1                                               т(z)

                                 1z

Структурная схема приведена на рис. 2.13:

т(t)                   т(t)

           kp

     рис. 2.13

ПИ:

                 k2             k1*p+k2

Wp(p)=k1+            =  

                    p                   p

                                 T                       T*p                   T               используем

Wву= (k1*p+k2)*                     =  k1*                 + k2*                =    допущение 1)     =

                                                          -1                                 -1                                    -1

                                1z                   1z                   1z

 

                                                 -1

                   1               k1*(1z  ) +k2*T          т(z)

=k1+ k2*                    =                               =   

                                     -1                                 -1                               

                  1z                   1z                      т(z)

         

                      -1                                       -1

т(z)*(1z  )=т(z)*(k1k1*z  +k2*T)

                                                                         -1

т(t)= (k1+k2*T)*т(t)-k1*т(t)*z                                                                            (2.19)

Структурная схема на рис. 2.14

        т(t)                                                               т(t)

                         k1+k2*T

                         - k1

                             

                                       рис. 2.16


 

А также другие работы, которые могут Вас заинтересовать

41468. Порядок проведения и учёт результатов инвентаризации основных средств и учёт их результатов 60.49 KB
  Основные средства — неотъемлемая часть имущества большинства организаций. В отношении таких объектов, как и любого другого имущества, должны быть обеспечены учет и контроль. Соответствие фактического наличия имущества данным бухгалтерского учета регулярно проверяется инвентаризацией. О методике проведения инвентаризации основных средств и оформлении ее результатов рассказывается в данной статье.
41469. Экономическое содержание, принципы, оценка и задачи учёта материально-производственных запасов 26.53 KB
  Понятие и сущность ОП установление фактов имеющих юридическое значение в ОП признание гражданина безвестно отсутствующим и объявление гражданина умершим признание гражданина ограниченно дееспособным или недееспособным ограничение или лишение несовершеннолетнего в возрасте от 14 до 18 лет права самостоятельно распоряжаться своими доходами. Отмена судом ограничения дееспособности Эмансипация Принудительная госпитализация гражданина в психиатрический стационар и принудительное освидетельствование семейный кодекс гражданский...
41470. Изучение организации и методики анализа выполнения сметы доходов и расходов бюджетного учреждения 168.34 KB
  Объектом исследования курсовой работы является смета доходов и расходов Бахчисарайского районного центра социальных служб для семьи, детей и молодежи. Предмет исследования – организация и методика анализа выполнения сметы доходов и расходов данного бюджетного учреждения
41471. Создание информационной системы управления заказами для МБУЗ ЦРБ 2.29 MB
  Провести анализ структуры предприятия и обосновать потребность создания для неёMRPсистемы; Рассмотреть существующие варианты реализации информационной системы; Произвести анализ из существующих средств разработки СУБД и сделать выбор для реализации информационной системы;
41472. РИМСКОЕ ПРАВО. Методические материалы 340.5 KB
  Настоящие методические материалы предназначены для подготовки к семинарским и практическим занятиям по дисциплине «Римское право» для студентов факультета внебюджетного образования (заочная форма обучения), обучающихся по направлению подготовки «Юриспруденция». Данная учебная дисциплина относится к вариативной части профессионального цикла
41473. Особенности сексуального поведения современной молодежи 106.8 KB
  В общем и целом, социологическое исследование является отправной точкой для определения общественного мнения по разным насущным и актуальным вопросам. Итоги подобных исследований зачастую используются для формирования стратегии регулирования культурных ценностей у разных социальных слоев общества.
41474. Аудит финансового состояния предприятия 83.75 KB
  Независимое подтверждение информации о результатах деятельности предприятий и соблюдения ими законодательства необходимо государству для принятия решений в области экономики и налогообложения.
41475. Культура педагогического труда 131.65 KB
  Цель курсовой работы - изучение профессиональной компетентности и определение смысла педагогической культуры.
41476. Теория систем и системный анализ, учебное пособие 1.97 MB
  Системный анализ – это научная дисциплина, занимающаяся проблемами принятия решений в условиях анализа большого количества информации различной природы. Целью применения системного анализа к конкретной проблеме является повышение степени обоснованности принимаемого решения