29826

Математическое описание дискретных СУ (ДСУ)

Лекция

Математика и математический анализ

Передаточные функции и динамические характеристики ДСУ Импульсная характеристика ДСУ Рекурсивный и нерекурсивный алгоритмы обработки. Будем рассматривать полностью дискретную СУ рис. Xkk=0m yk k=0n рис.2 q=0 i=1 Данный алгоритм принято изображать в виде структурной схемы рис.

Русский

2013-08-21

373 KB

3 чел.

15

Лекция 2

Математическое описание дискретных СУ (ДСУ)

  1.  Разностное уравнение ДСУ. Структурная схема алгоритма.
    1.  Передаточные функции и динамические характеристики ДСУ
    2.  Импульсная характеристика ДСУ
    3.  Рекурсивный и нерекурсивный алгоритмы обработки.
    4.  Передаточная функция вычислительного устройства цифрового регулятора.
    5.  Типовые дискретные алгоритмы и структурные схемы цифровых регуляторов

  1.  Разностное уравнение ДСУ. Структурная схема алгоритма.

Будем рассматривать полностью дискретную СУ (рис. 2.1), которая не содержит элементов, работающих в непрерывном времени.

X(k),k=0,m                   y(k), k=0,n

                                                              рис. 2.1

Процессы в такой системе описываются разностными уравнениями различного порядка.  В общем виде разностное уравнение n-го порядка записывается так:

 n                       m

ai*y(k-i)= bq*x(k-q)  , n>m                                                                                (2.1)

i=0                    q=0

Уравнение 1 порядка:

ao*y(k)+a1*y(k-1)=bo*x(k)+b1*x(k-1)                                             

Уравнение 2 порядка:

ao*y(k)+a1*y(k-1)+a2*y(k-2)=bo*x(k)+b1*x(k-1)+b2*x(k-2)    

 

Данный алгоритм представляет  собой алгоритм свертки двух последовательностей. Обычно такой алгоритм записывается относительно старшего номера при y .

        m                           n

y(k)=bq*x(k-q) - ai*y(k-i)                                                                                   (2.2)

          q=0                         i=1

Данный алгоритм принято изображать в виде структурной схемы (рис. 2.2).                                                                          Опр. Графическая модель разностного уравнения называется структурной                                                                                    схемой.

     x(k)                                                                                                       y(k)          

           bo

   

          b1                                  -a1

          b2                                                            -a2

…                                                …

          bn                                                            -am

                                          рис. 2.2

Выводы: 

 1. Для вычисления выходной дискретной последовательности y(k)    необходимо задать входную последовательность x(k) и алгоритм обработки.

 2. При вычислении дискретной свертки используются умножители, сумматоры и линии задержки.

3. Если в отсчете y(k) участвуют предыдущие отсчеты y , то такой алгоритм является алгоритмом обработки с обратной связью, при этом, если коэффициенты при y в алгоритме отрицательны, то это алгоритм с отрицательной обратной связью (оос), если положительны – то с положительной обратной связью (пос).

                       

2.2. Передаточные функции и динамические характеристики ДСУ

Рассмотренный ранее алгоритм  работал с числовыми последовательностями. Каждый отсчет представляет собой некоторое число, поэтому алгоритм удобен для расчетов на ЭВМ. Для получения динамических характеристик вычислительного устройства (или ДСУ) необходимо перейти  от числовых последовательностей к -импульсным последовательностям, содержащим непрерывную переменную  t.   Получим алгоритм дискретной свертки    –импульсной последовательности.  Для этого представим:

             

xт(t)= x(k*T)* (t-k*T)                                                                                           (2.3)

           k=0

Аналогично представим:

             

yт(t)= y(k*T)* (t-k*T)                                                                                           (2.4)

           k=0

Тогда алгоритм дискретной свертки можно записать в следующем виде:

yт(t)+ a1*yт(t-T)+a2*yт(t-2*T)+…=bo*xт(t)+b1*xт(t-T)+…                                          (2.5)

или

                              

yт(t)= bk*x(t-k*T) -  ak*yт(t-k*T)                                                                        (2.5*)

             k=0                             k=1  

Выражение (2.5*) – алгоритм дискретной свертки –импульсной последовательности. Его можно также изобразить в виде структурной схемы. Она будет аналогичной схеме на рис.2.2, только вместо x(k) будет xт(t-k*T), на выходе вместо y(k) – yт(t).

В этом алгоритме присутствует непрерывная переменная t , поэтому для определения динамических характеристик ДСУ можем использовать интегральные преобразования классической математики.

Определим ОПФ:

                                                                                        -p*T

Lxт(t)=Xт(p) ;   L xт(t-T)=Xт(p)* e                      

                                                              

                                                                -p*k*T

Lyт(t)=Yт(p)          ; Lyт(t-k*T)=Yт(p)*e

Возьмем преобразование  Лапласа от правой и левой  частей (2.5) и вынесем общие множители:

                              -p*T          –p*2*T                                           -p*T           -p*2*T

Yт(p)*(1+a1*e  +a2*e      +…)=Xт(p)(bo+b1*e   +b2*e      +…)     

По определению:                                                         -p*k*T

                                                              -p*T              -p*2*T                        bk*e

             Yт(p)        bo+b1*e     +b2*e      +…        k=0

Wт(p) =             =                                             =

             Xт(p)                 -p*T              -p*2*T                                       -p*k*T

                           1+a1*e     +a2*e      +…           1+ ak*e

                                                                               k=1

                             -p*k*T

                                 bk*e                                                   Xт(p)                       Yт(p)

                  k=0                                                

Wт(p) =                                         (2.6)

                              -p*k*T                                                                                    рис. 2.3

                1  ak*e

                      k=1

 

Если проанализировать  выражение (2.6), то видим, что в знаменателе стоит выражение 1+ …, характерное для систем с обратной связью, при этом «+» - для систем с оос., а «-» - для систем с пос.

Так как все характеристики ДСУ связаны друг с другом, то, зная ОПФ, можем определить КПФ и СПФ и временные характеристики системы  (рис. 2.3).

Определим КПФ, АЧХ, ФЧХ:

                                                    -p*k*T

                                                                  bk*e

                                         k=0

Wт(jw) = Wт(p)         =                                                                                             (2.7)                                                     

                        p=jw                         -p*k*T

                                        1  ak*e

                                              k=1

Wт(w)=Wт(jw)       

т(w)=arg Wт(jw)                                                                                     (2.8)        

Комплексные ОПФ, АЧХ, ФЧХ системы периодичны по частоте с интервалом периодичности             

          2*

wт=

         T

Находим СПФ:

                                                         -k

                                                                           bk*z

                                              k=0

Wт(z) = Wт(p)               =                                                                                        (2.9)                                                     

                          p*T                                  -k

                        e    =z            1  ak*z

                                                    k=1

Зная СПФ, легко построить структурную схему алгоритма обработки без промежуточных вычислений (без записи самого алгоритма обработки). Числитель СПФ показывает алгоритм обработки входного сигнала, знаменатель – алгоритм обработки выходного сигнала (рис. 2.4).

xт(t) 

                       bo                                                                                                             yт(t)

                      b1                               -a1

…                                                  …

                         рис. 2.4

  1.  Импульсная характеристика ДСУ

Для ДСУ удобной временной характеристикой является импульсная характеристика. Ее принято записывать также как и дискретный сигнал:

        

gт(t)=gk* (t-k*T)                                                                                                (2.10)

       k=0

 Импульсная характеристика может быть представлена в виде z-преобразования:

                              -k

Zgт(t)=Gт(z)=gk*z                                                                                           (2.11)

                                  k=0

Выводы:  

  1.  Импульсная характеристика дискретной системы представляется в виде своих отсчетов.
  2.  z-преобразование импульсной характеристики физически реализуемой системы содержит переменную z в отрицательных степенях .

Определим связь импульсной характеристики с другими характеристиками системы:

Wт(z)=Gт(z)

           -k

       bk*z                         

   k=0                                                              -k               -2*k

                               =  go+g1*z  + g2*z    +…                                                      (2.12)                                                     

                  -k

 1+  ak*z

      k=1

Выводы:

  1.  Если полином числителя СПФ делится на полином знаменателя без остатка, то СПФ Wт(z) будет содержать ряд с конечным числом членов

                N             -k

Wт(z)=gk*z

         k=0

Такие системы называются системами с конечной импульсной характеристикой (КИХ). Они обрабатывают сигнал без обратной связи.

  1.  Если полином числителя СПФ не делится на полином знаменателя, то СПФ будет иметь бесконечное число членов ряда

                        -k

Wт(z)=gk*z

         k=0

Такие системы называются системами с бесконечной импульсной характеристикой (БИХ). Они обрабатывают сигнал с обратной связью.

3. Если характеристики ДСУ   Wт(z), Wт(p),Wт(jw) выражаются в виде ряда, то коэффициентами ряда являются отсчеты импульсной характеристики.

4.Импульсную характеристику ДСУ можно определить экспериментально либо рассчитать. Для этого необходимо на вход системы подать единичный импульс. Тогда дискретная последовательность на выходе yт(t)=gт(t).

  1.  Рекурсивный и нерекурсивный алгоритмы обработки.

Опр.  Нерекурсивным алгоритмом  обработки называется алгоритм дискретной обработки без обратной связи. При этом ИХ может быть конечной или бесконечной. (рис. 2.5)

СПФ:

                   (N)      -k            Yт(z)

Wт(z)=gk*z      =                                                                                                (2.13)

               k=0                         Xт(z)

xт(t)

                      go                                              yт(t)=go*xт(t)+g1*xт(t-T)+…

                      g1

                       рис. 2.5

Опр. Рекурсивным алгоритмом обработки называется алгоритм обработки дискретного сигнала с обратной связью.

                            -k

                               bk*z                         

                    k=0                                      Yт(z)         

Wт(z)  =                                =                                                                             (2.14)                                                                               

                                         -k                        Xт(z)

                1+  ak*z

                      k=1

Структурная схема алгоритма представлена на рис.2.4

  1.  Передаточная функция вычислительного устройства

                                 цифрового регулятора.

Реальные СУ наряду с дискретными элементами содержат элементы, работающие в непрерывном времени.

Рассмотрим структурные схемы следящих СУ:

Непрерывная  СУ :

U(t)                 (t)                      (t)                                  y(t)

              

                -

                                     рис. 2.6

                                        

Дискретная СУ:                                                                 

 U(t)               (t)                  т(t)               т(t)                   (t)                        y(t)              

             -

                                элементы дискретного действия                          непр. элемент

Wф(p) – ОПФ формирователя непрерывного сигнала

                                        рис. 2.7

Импульсная СУ:

   U(t)                 (t)                 и(t)                и(t)                 (t)                          y(t)

                

                     -                 дискретные     элементы                      непр.      элементы

                                                    рис. 2.8

Цифровая СУ:

U(t)              (t)               ц(t)               ц(t)               (t)                        y(t)

          -

           -

                                                     рис. 2.9

Во всех системах осуществляется преобразование: непрерывный сигнал  в дискретный, обработка дискретного сигнала и обратное преобразование дискретного сигнала в непрерывный.

Таким образом, процесс на выходе дискретного элемента представляет собой результат математических или логических преобразований информации по предписанной программе. Дискретный элемент состоит при этом из преобразователя (преобразует непрерывный сигнал в дискретный, импульсный, цифровой), вычислительного устройства и формирующего преобразователя, преобразовывающего дискретный, импульсный, цифровой сигнал в непрерывный.

При дальнейшем рассмотрении в качестве дискретного элемента будем рассматривать элемент, представляющий собой следующую структуру (рис. 2.10):

W(p) - -модулятор       ;  Wву(p) – вычислительное устройство

Wф(p) - формирователь

(t)                                                                                (t)

                       цифровой регулятор  

                                     рис. 2.10

Тогда передаточная функцмя цифрового регулятора примет вид:

Wцр(p)=W(p)*Wву(p)*Wф(p)                                                                               (2.15)

Техническая реализация алгоритма обработки осуществляется выбором программы работы вычислительного устройства. В технических системах для реализации алгоритма используются специализированные процессоры. По существу все алгоритмы работы ВУ цифровых регуляторов делятся на 2 класса:

  1.  Регуляторы, реализующие алгоритмы – аналоги непрерывных законов управления.
  2.  Цифровые регуляторы, реализующие специфические законы управления, не имеющие аналогов  в непрерывной области (например, алгоритмы конечной длительности).

Определим Wву(p), реализующего непрерывный закон управления Wp(p). При рассмотрении будем использовать следующие допущения:

  •   Будем пренебрегать ошибками дискретизации и квантования

W(p)*Wф(p)1

                    2)   Будем полагать , что  Wцр(p)=Wp(p)

При этих предположениях:

                Wp(p)

Wву(p)=

             W(p)*Wф(p)

Таким образом нужно определить W(p), Wф(p)  - ?

В качестве модулятора используем простейший вид -  -модулятор, импульсная характеристика которого

        1                                         1

g(t)=         *(t)           W(p)=           

        T                                         T

В качестве формирователя выберем фиксатор нулевого порядка с импульсной характеристикой            gф(t)=1(t)-1(t-T)

g                                                                                                                  -1                                      

                                                   oo        1       1     -p*T      1           -p*T       1 z

                                               Wф(p)=              *e    =       *(1-e    )=

 1                                                            p       p              p                      p

                           

            

            T                  t

Меньшую погрешность дают фиксаторы  большего порядка:

-   фиксатор 1 порядка

     11  1+p*T          -1    2

 Wф=           *  1-z         

         p*T

-   фиксатор 2 порядка

                                   2      2

        22    2+3*p*T+2*p *T               -1   3

Wф =                                 *   1z

                    3       2

               2*p * T

Сравнительные характеристики при приближении фиксаторами различного порядка приведены на рис. 2.11

    Sn

                                                                                        S(t) – приходящий сигнал

                                                                                                         11

                                                                                         S1(t) при  Wф

                                                                                                         22

                                                                                         S2(t) при Wф

                                                           t

                               рис. 2.11

Подставляем найденные W(p) и Wф(p):

                         T*p

Wву(p)= Wp(p)*                                                                                                     (2.16)

                               -1             

                       1 z

Получили ОПФ ВУ в ДСУ с –модулятором и фиксатором нулевого порядка, реализующую закон управления, аналогичный непрерывному закону управления Wp(p). Если в СУ используются другие виды модуляторов и демодуляторов, нужно использовать другие формулы для  ОПФ.

  1.   Алгоритмы и типовые дискретные структурные схемы

                            цифровых регуляторов

На практике наиболее удобно использовать и наибольшее распространение получили типовые непрерывные законы управления: П-, И-, ПИ-законы. Определим дискретные аналоги типовых законов управления: дискретный П-, дискретный И-, дискретный ПИ-законы.

И:

             kp                                                                  1                т(z)

Wp(p)=                   Wву(p)=kp*T*                  =

             p                                                    -1              т(z)

                                                           1z

                      -1

т(z)*(1-z   )=kp*T*т(z)

т(t)-т(t-T)=kp*T*т(t)

т(t)=kp*T*т(t)                                                                                                    (2.17)

Структурная схема  приведена на рис. 2.12:

т(t)                                                   т(t)

             kp*T

                                

                                -

      

рис. 2.12

П :

         Wp(p)=kp

                             T*p         используем               т(z)

          Wву(p)=kp*            =   допущение  1)    =kp=                                                        (2.18)

                                         -1                                               т(z)

                                 1z

Структурная схема приведена на рис. 2.13:

т(t)                   т(t)

           kp

     рис. 2.13

ПИ:

                 k2             k1*p+k2

Wp(p)=k1+            =  

                    p                   p

                                 T                       T*p                   T               используем

Wву= (k1*p+k2)*                     =  k1*                 + k2*                =    допущение 1)     =

                                                          -1                                 -1                                    -1

                                1z                   1z                   1z

 

                                                 -1

                   1               k1*(1z  ) +k2*T          т(z)

=k1+ k2*                    =                               =   

                                     -1                                 -1                               

                  1z                   1z                      т(z)

         

                      -1                                       -1

т(z)*(1z  )=т(z)*(k1k1*z  +k2*T)

                                                                         -1

т(t)= (k1+k2*T)*т(t)-k1*т(t)*z                                                                            (2.19)

Структурная схема на рис. 2.14

        т(t)                                                               т(t)

                         k1+k2*T

                         - k1

                             

                                       рис. 2.16


 

А также другие работы, которые могут Вас заинтересовать

20025. Битва под Москвой 11.08 KB
  7 ноября 1941 года на Красной Площади состоялся традиционный военный парад участвовавшие в нём войска сразу отправлялись на фронт. 56 декабря 1941 года советские войска перешли в контрнаступление под Москвой. Советские войска перешли в наступление с целью уничтожить РжевскоВяземскую группировку противников. Советские войска потерпели серьезное поражение под Харьковым и Керчью чем было предрешено падение Севастополя.
20027. Коренной перелом в ходе второй мировой войны 15.6 KB
  Сталинградская битва 17 июля 19422 февраля 1943 По советскому плану уран окружение противника в районе сталинграда 19 ноября 1942 красная армия перешла в наступление и окр немецкую группировку под командованием Паулюса. 5 июля 1943 делится на два этапа оборонительные сражения и контрнаступление 12 июля 43 танковое сражение под Прохоровкой.
20028. Полный разгром фашистской германии и завершение 2 мировой войны 11.93 KB
  Январь 1944 снятие блокады Ленинграда 1944 корсуньшевченковская операция. Июньавгуст 1944 Белорусская операция Багратион была освобождена Белоруссия Латвия часть Литвы Август 1944 ЛьвовскоСандомирская операция освобождены: Львов Западная Украина Позже ЯсскоКишеневская операция освобождена: Молдавия и часть Румынии Апрель 1945 года Восточно Прусская операция советские войска ступили в Кенинсберг Май 1945 заключительная Берлинская операция битва началась у Зееловских высот 2 мая Берлинский гарнизон сдался В ночь с 89 мая ...
20029. СССР в 1945-1953. Восстановление экономики после ВОВ. Послевоенный сталинизм 14.66 KB
  В конце 1940 возникло ленинградское дело обвинение видных деятелей партии в намерении превратить ленинград в опору борьбы со сталиным были расстреляны Вознесенский Радионов Кузнецов. 1953 дело врачей было арестовано группа врачей кремлевской больницы по обвинению в том что она якобы повинны смерти жданова и пытались умертвить других государственных деятелей но со смертью сталина дело было прекращено.
20030. Послевоенный мир, его разделение на две системы. Переход в холодной войне 15.91 KB
  ОВД Организация Варшавского ДоговораСССР. Гонка вооружений наращивание СССР и США количества вооружений с целью достижения качественного превосходства. В СССР эта политика проявлялась в создании железного занавеса системы международной самоизоляции. Причины холодной войны: Победа во II мировой войне привела к резкому усилению СССР и США.
20031. Попытки реформирования советской системы в 1950-60. Н.С Хрущев 17.59 KB
  С Хрущев. Борьба за личное лидерство длилась вплоть до весны 1958 но в итоге к власти пришел Хрущев.Начатая Хрущевым критика сталинизма привела к некоторой либерализации общественной жизни общества оттепель. Хрущева В 1954 г.
20032. СССР в период застоя(1964-1985) 14.54 KB
  к и в политической экономической и культурной жизни страны все было стабильно не было ничего нового. В культурной жизни зарождалось дессидентское движениенелегальные кружки интеллигенции выступающие за свержение коммунизма правительство полностью контролировало культурную жизнь странывыссылка из страны неугодных большевикам людейсолженицын плесецаявишневская 18 лет руководство брежнева перевели государство в состояние развала 1982Брежнев умирает с 18821884 правил Андропов а 18841885 Черненко общество жило от похорон до похорон...
20033. Перестройка-от частных преобразований к смене модели общественного развития(1985-1991) 14.85 KB
  В апреле 1985 было объявлено о проведении масштабных реформ с целью изменения общества например в экономике курс на ускорениеэто повышение темпов экономического роста на базе научнотехнического прогресса Первыми перестроечными законами стала антиалкогольная компания и закон о госприемке но все эти меры не дали никаких результатов да и к тому же всю обстановку осложнила авария на чернобыльской АЭС 1986. Основная задача перестройки заключалась в придании экономике рыночных основ. Первым шагом к рыночной экономике стал закон о гос.