29828

Алгебраические критерии устойчивости

Лекция

Математика и математический анализ

Алгебраические критерии устойчивости. Частотные критерии устойчивости. Запасы устойчивости СУ. Понятие об областях устойчивости.

Русский

2013-08-21

115.5 KB

26 чел.

Лекция № 5

5.1. Алгебраические критерии устойчивости.

5.2. Частотные критерии устойчивости.

5.3. Запасы устойчивости СУ.

5.4. Понятие об областях устойчивости.

* * * * *

Критерии  устойчивости – правила определения положения корней уравнения.

Критерии делятся на:

  •  Алгебраические (находятся корни характеристического уравнения)
  •  Частотные (строится годограф)

Исследование устойчивости системы управления осуществляется:

  1.  После расчета или проектирования каждой системы управления необходимо проверить её устойчивость.
  2.  При проектировании или расчете системы управления определяются такие параметры настройки, которые обеспечивают заданный запас устойчивости.

5.1. Алгебраические критерии устойчивости.

Алгебраические критерии устойчивости позволяют по корням характеристического уравнения А(р) судить об устойчивости системы:

А(р)=anpn+an-1pn-1+…+a1p+a0,

здесь А(р) – знаменатель

В свою очередь алгебраические критерии устойчивости делятся на:

  1.  Критерий устойчивости Рауса.
  2.  Критерий устойчивости Гурвица.

Критерий устойчивости Рауса: для асимптотической устойчивости системы управления необходимо и достаточно выполнение условий Рауса:

  •  an > 0
  •  an-1 > 0
  •   > 0
  •  и т.д.

Критерий устойчивости Гурвица: для асимптотической устойчивости системы управления необходимо и достаточно, чтобы при an > 0 все диагональные определители матрицы Гурвица были > 0:

 

1=an-1> 0

2=an-1an-2-anan-3 > 0

.  .  .

n=a0n-1 > 0

Для первого и второго порядков условия Рауса и Гурвица требуют положительности всех коэффициентов уравнения.

Критерий устойчивости Рауса наиболее экономичен по объему вычислений, удобен для программирования, поэтому широко применяется для анализа задач устойчивости на ЭВМ.

Эти критерии позволяет рассчитывать пакет прикладных программ ТАУ-2.

Алгебраические критерии не позволяют судить об удалённости системы от границ устойчивости. Интуитивно эту удаленность можно оценить силой неравенств.

5.2. Частотные критерии устойчивости.

Частотные критерии устойчивости базируются на принципе аргумента, который состоит в следующем:

A(p)=anpn+an-1pn-1+ … +a0

A(j)=an(j)n+an-1(j)n-1+ … +a0

()=arg[A(j)],   (0;)

()-(0)=,

т.е. приращение аргумента комплексного характеристического полинома A(j), при изменении частоты от 0 до должно удовлетворять этому условию: .

Частотные критерии устойчивости:

  •  критерий Михайлова
  •  критерий Найквиста

Критерий Михайлова:

Для асимптотической устойчивости системы необходимо и достаточно, чтобы годограф (АФХ) характеристического уравнения системы A(j) при изменении частоты  от 0 до , начинаясь на действительной оси, обходил последовательно в положительном направлении (против часовой стрелки) n квадрантов, или же поворачивался на угол  в положительном (против часовой стрелки) направлении.

Примеры годографов устойчивых систем n порядка:

На границе устойчивости система будет находиться тогда, когда годограф Михайлова будет проходить через начало координат:

 Гр.уст.

Выводы: 1)изменение коэффициента передачи в системе смещает годограф влево или вправо, т.е. изменяя К можно менять устойчивость системы.

       2)с увеличением порядка n системы более 4 (n=5,6,…) объем вычислений годографа Михайлова резко возрастает, поэтому лучше использовать более эффективные методы и критерии устойчивости.

Критерий Найквиста:

Критерий Найквиста позволяет судить о замкнутой системе по частотным свойствам разомкнутой системы, причем АФХ разомкнутой системы можно получить экспериментально и для использования критерия устойчивости не надо проводить аппроксимацию, кроме того, АФХ разомкнутой системы проще АФХ замкнутой.

x        W1     W2         y

X    W1   Y  

   W2

Кольцо обратной связи: W1W2=Wраз(p), здесь Wраз(p)-ОПФ разомкнутой системы.

Для критерия Найквиста существуют 3 модификации в зависимости от устойчивости разомкнутой системы и вида её ОПФ (статическая или астатическая):

  1.  Пусть разомкнутая система разомкнута и статическая, т.е. , при этом в системе нет нулевого корня, т.е. ни один корень не равен нулю. Если разомкнутая статическая система управления устойчива, то для асимптотической устойчивости замкнутой системы необходимо и достаточно, чтобы годограф разомкнутой системы не охватывал точку      (-1;j0) при изменении частоты от 0 до .

      j

          +

     (-1;j0)

Система будет находится на границе устойчивости, если её годограф проходит через точку (-1;j0).

Изменяя коэффициент передачи системы, можно изменять положение годографа относительно точки (-1;j0) и тем самым изменять устойчивость системы. Таким образом мы по годографу разомкнутой системы судим об устойчивости замкнутой системы.

  1.  Пусть разомкнутая система астатическая, т.е. ,   

она имеет нулевые корни, а  здесь – порядок астатизма. Число  определяет число интегрирующих звеньев в системе. Полином А(р) не имеет корней в правой полуплоскости и на мнимой оси. Такую классификацию мы называли нейтральной. Система управления, астатическая, нейтральная в разомкнутом состоянии, будет устойчива при замыкании, если годограф разомкнутой системы с его дополнением к  не охватывает точку (-1;j0) на действительной оси.

Все эти системы не охватывают точку (-1;j0).

Изобразим годографы неустойчивых систем:

  1.  Пусть ОПФ разомкнутой системы равна:  такова,    

что характеристическое уравнение А(р) имеет m корней в    

правой полуплоскости (Re > 0). Это говорит о том, что  система неустойчива.

Система неустойчивая в разомкнутом состоянии будет асимптотически устойчива при замыкании, если при изменении частоты от 0 до годограф Wраз(j) m/2 раз охватывает точку (-1;j0) в положительном направлении, где m – число корней полинома А(р) лежащих в правой полуплоскости.

Рассмотрим пример:

m=2, Wраз(j) – неустойчивая система:

ВЫВОДЫ:

  1.  алгебраические критерии устойчивости используются при
  2.  критерий Михайлова удобно применять при исследовании сложных многоконтурных систем, когда необходимо  выяснить  влияние изменения структуры системы на ее устойчивость
  3.  критерий устойчивости  Найквиста – для сложных систем, если характеристики экспериментальные, кроме того позволяет исследовать системы, характеристики которых отличны от дробно рациональных
  4.  в вычислительном аспекте критерии Найквиста и Михайлова подобны
  5.  используя критерии устойчивости, можно определить параметры СУ, выводящие ее на границу устойчивости.

Так же разработан и широко используется логарифмический критерий устойчивости Найквиста:

  1.  Замкнутая система будет устойчива, если (ср)>0.
  2.  Замкнутая система будет устойчива, если для разомкнутой системы L()<0.

5.3. Запасы устойчивости СУ.

  Факта о наличии устойчивости системы иногда оказывается недостаточно, чаще требуется оценить величину запаса устойчивости, т.е. степени удаленности системы от границы устойчивости. Это необходимо для того, что система, находящаяся по расчету близко к границе устойчивости при реализации может оказаться неустойчивой. Причиной этого может оказаться неточность реализации, неточности  математического описания системы, неучтенные возмущения и т.д.

  Алгебраические критерии устойчивости дают качественные понятия об устойчивости.

  Частотные критерии устойчивости дают представление о запасах устойчивости:

  1.  По фазе
  2.  По амплитуде L

- запас устойчивости по фазе

с – запас устойчивости по амплитуде (L=20*log(c))

При проектировании системы запасы устойчивости принято принимать следующими:

С = 0,2 0,4 (L 6  20 дБ)

= 30º 60º

5.4. Понятие об областях устойчивости.

Рассмотренные критерии устойчивости позволяют определить устойчивость системы управления с заданными параметрами или исследовать влияние параметров системы на её устойчивость, например определить критическое значение коэффициента передачи.

При проектировании системы важно знать не только то, что система устойчива, но важно также знать диапазон изменения параметров системы управления в пределах её устойчивости. Для этого строятся графики, определяющие граничные значения устойчивых параметров системы.

Рассмотрим построение границ устойчивости на примере. Пусть система управления состоит из П - регулятора и звена третьего порядка:

       U                             Wp(p)  Wo(p)                       Y

Wp(p)=Kp ;

Определить критическое значение коэффициента передачи системы, выводящее замкнутую систему на границу устойчивости.

РЕШЕНИЕ:

Решим с использованием критерия устойчивости Найквиста:

Wраз(j)= –1

   Wраз()=1

   

   ()= –

,

К=КрКо

 

 раз()= –3*arctg(T)= –

arctg(T)= / 3

T =   = / T

Подставляем  в первое уравнение и определяем Ккрит :

  Ккрит=8

Значит КоКр < 8, Кр=8/Ко

             kp

                                                                 

  Неуст.      Неуст.  

       Уст.                                 

                      ko

 Неуст.       Неуст.

Для построения областей устойчивости применяются специальные методы:

  •  Метод Вышнеградского
  •  Метод корневого годографа
  •  Метод D-разбиения плоскости одного параметра
  •  Метод D-разбиения плоскости двух параметров


n=2

n=1

n=3

n=4

n=5

j

Re

j

                               Re

не уст.

на гран. уст.

уст.

j

-1

+

j

+

-1

j

=0

=

+

-

j

ср

-1

+

o

0

o

-1

+

c

j

неустойчивая область

устойчивая область

К

0   1   2    3   4    5    6   7  8    9   10   

c


 

А также другие работы, которые могут Вас заинтересовать

7797. Послереформенные изменения в России (вторая половина 19 века) 27.5 KB
  Послереформенные изменения в России (вторая половина 19 века) Новые условия хозяйственной и общественной жизни пореформенной России настоятельно требовали подготовлённых и грамотных людей. Необходимо было значительно расширить базу народного образов...
7798. Просвещение абсолютизма 41 KB
  Просвещение абсолютизма Просвещённый абсолютизм - политика, проводимая во второй половине XVIII века рядом монархических стран Европы и направленная на устранение остатков средневекового строя в пользу капиталистических отношений. Основы просве...
7799. Развитие системы образования в России в начале 20 века 32 KB
  Развитие системы образования в России в начале 20 века Основным типом школы в России к началу ХХ века, как и раньше, была начальная школа, отличавшаяся пестротой не только по ведомственной принадлежности, но и по срокам и содержанию обучения. Самыми...
7800. Реформы Петра 1 29.5 KB
  Реформы Петра 1. Преобразования в сфере культуры Пётр I изменил начало летосчисления с так называемой византийской эры (от сотворения Адама) на от Рождества Христова. 7208 год по византийской эре стал 1700 годом от Рождества Христова. Однако...
7801. Советская школа в годы ВОВ и послевоенные годы(1941-58гг.) 25 KB
  Советская школа в годы ВОВ и послевоенные годы(1941-58гг.). Война затормозила осуществление всеобщего обязательного семилетнего обучения. Развертыванию всеобщего обучения препятствовали перемещения населения из западных районов в восточные, уход учи...
7802. Советская школа в период с 1921 по 1930гг 25.5 KB
  Советская школа в период с 1921 по 1930гг. По окончании гражданской войны советский народ приступил к мирному строительству, которое осуществлялось в трудных условиях хоз. разрухи и голода. Надо было немедленно восстановить промышленность, поднять с...
7803. Советская школа в период с 1930 по 1940гг 26 KB
  Советская школа в период с 1930 по 1940 гг. Советское правительство принимает ряд постановлений о школе, которые определили ход ее дальнейшего развития, направления в перестройке ее учебно-воспитательной работы, а также новые теоретические достижения...
7804. Советская школа и педагогика в 1945-1964 27 KB
  Советская школа и педагогика в 1945-1964 Реформы коснулись и народного образования. Получили развитие школы рабочей молодежи. Были увеличены масштабы подготовки рабочих через школы фабрично-заводского обучения, ремесленные и железнодорожные уч...
7805. Советская школа и педагогика в сер. 60-х - н. 90х годов 25.5 KB
  Советская школа и педагогика в сер. 60-х - н. 90х годов Советская школа в период с 1958 по 1992г. В 1958г. был принят закон об укреплении связи школы с жизнью и о дальнейшем развитии системы народного образования, который установил в нашей ст...