29828

Алгебраические критерии устойчивости

Лекция

Математика и математический анализ

Алгебраические критерии устойчивости. Частотные критерии устойчивости. Запасы устойчивости СУ. Понятие об областях устойчивости.

Русский

2013-08-21

115.5 KB

26 чел.

Лекция № 5

5.1. Алгебраические критерии устойчивости.

5.2. Частотные критерии устойчивости.

5.3. Запасы устойчивости СУ.

5.4. Понятие об областях устойчивости.

* * * * *

Критерии  устойчивости – правила определения положения корней уравнения.

Критерии делятся на:

  •  Алгебраические (находятся корни характеристического уравнения)
  •  Частотные (строится годограф)

Исследование устойчивости системы управления осуществляется:

  1.  После расчета или проектирования каждой системы управления необходимо проверить её устойчивость.
  2.  При проектировании или расчете системы управления определяются такие параметры настройки, которые обеспечивают заданный запас устойчивости.

5.1. Алгебраические критерии устойчивости.

Алгебраические критерии устойчивости позволяют по корням характеристического уравнения А(р) судить об устойчивости системы:

А(р)=anpn+an-1pn-1+…+a1p+a0,

здесь А(р) – знаменатель

В свою очередь алгебраические критерии устойчивости делятся на:

  1.  Критерий устойчивости Рауса.
  2.  Критерий устойчивости Гурвица.

Критерий устойчивости Рауса: для асимптотической устойчивости системы управления необходимо и достаточно выполнение условий Рауса:

  •  an > 0
  •  an-1 > 0
  •   > 0
  •  и т.д.

Критерий устойчивости Гурвица: для асимптотической устойчивости системы управления необходимо и достаточно, чтобы при an > 0 все диагональные определители матрицы Гурвица были > 0:

 

1=an-1> 0

2=an-1an-2-anan-3 > 0

.  .  .

n=a0n-1 > 0

Для первого и второго порядков условия Рауса и Гурвица требуют положительности всех коэффициентов уравнения.

Критерий устойчивости Рауса наиболее экономичен по объему вычислений, удобен для программирования, поэтому широко применяется для анализа задач устойчивости на ЭВМ.

Эти критерии позволяет рассчитывать пакет прикладных программ ТАУ-2.

Алгебраические критерии не позволяют судить об удалённости системы от границ устойчивости. Интуитивно эту удаленность можно оценить силой неравенств.

5.2. Частотные критерии устойчивости.

Частотные критерии устойчивости базируются на принципе аргумента, который состоит в следующем:

A(p)=anpn+an-1pn-1+ … +a0

A(j)=an(j)n+an-1(j)n-1+ … +a0

()=arg[A(j)],   (0;)

()-(0)=,

т.е. приращение аргумента комплексного характеристического полинома A(j), при изменении частоты от 0 до должно удовлетворять этому условию: .

Частотные критерии устойчивости:

  •  критерий Михайлова
  •  критерий Найквиста

Критерий Михайлова:

Для асимптотической устойчивости системы необходимо и достаточно, чтобы годограф (АФХ) характеристического уравнения системы A(j) при изменении частоты  от 0 до , начинаясь на действительной оси, обходил последовательно в положительном направлении (против часовой стрелки) n квадрантов, или же поворачивался на угол  в положительном (против часовой стрелки) направлении.

Примеры годографов устойчивых систем n порядка:

На границе устойчивости система будет находиться тогда, когда годограф Михайлова будет проходить через начало координат:

 Гр.уст.

Выводы: 1)изменение коэффициента передачи в системе смещает годограф влево или вправо, т.е. изменяя К можно менять устойчивость системы.

       2)с увеличением порядка n системы более 4 (n=5,6,…) объем вычислений годографа Михайлова резко возрастает, поэтому лучше использовать более эффективные методы и критерии устойчивости.

Критерий Найквиста:

Критерий Найквиста позволяет судить о замкнутой системе по частотным свойствам разомкнутой системы, причем АФХ разомкнутой системы можно получить экспериментально и для использования критерия устойчивости не надо проводить аппроксимацию, кроме того, АФХ разомкнутой системы проще АФХ замкнутой.

x        W1     W2         y

X    W1   Y  

   W2

Кольцо обратной связи: W1W2=Wраз(p), здесь Wраз(p)-ОПФ разомкнутой системы.

Для критерия Найквиста существуют 3 модификации в зависимости от устойчивости разомкнутой системы и вида её ОПФ (статическая или астатическая):

  1.  Пусть разомкнутая система разомкнута и статическая, т.е. , при этом в системе нет нулевого корня, т.е. ни один корень не равен нулю. Если разомкнутая статическая система управления устойчива, то для асимптотической устойчивости замкнутой системы необходимо и достаточно, чтобы годограф разомкнутой системы не охватывал точку      (-1;j0) при изменении частоты от 0 до .

      j

          +

     (-1;j0)

Система будет находится на границе устойчивости, если её годограф проходит через точку (-1;j0).

Изменяя коэффициент передачи системы, можно изменять положение годографа относительно точки (-1;j0) и тем самым изменять устойчивость системы. Таким образом мы по годографу разомкнутой системы судим об устойчивости замкнутой системы.

  1.  Пусть разомкнутая система астатическая, т.е. ,   

она имеет нулевые корни, а  здесь – порядок астатизма. Число  определяет число интегрирующих звеньев в системе. Полином А(р) не имеет корней в правой полуплоскости и на мнимой оси. Такую классификацию мы называли нейтральной. Система управления, астатическая, нейтральная в разомкнутом состоянии, будет устойчива при замыкании, если годограф разомкнутой системы с его дополнением к  не охватывает точку (-1;j0) на действительной оси.

Все эти системы не охватывают точку (-1;j0).

Изобразим годографы неустойчивых систем:

  1.  Пусть ОПФ разомкнутой системы равна:  такова,    

что характеристическое уравнение А(р) имеет m корней в    

правой полуплоскости (Re > 0). Это говорит о том, что  система неустойчива.

Система неустойчивая в разомкнутом состоянии будет асимптотически устойчива при замыкании, если при изменении частоты от 0 до годограф Wраз(j) m/2 раз охватывает точку (-1;j0) в положительном направлении, где m – число корней полинома А(р) лежащих в правой полуплоскости.

Рассмотрим пример:

m=2, Wраз(j) – неустойчивая система:

ВЫВОДЫ:

  1.  алгебраические критерии устойчивости используются при
  2.  критерий Михайлова удобно применять при исследовании сложных многоконтурных систем, когда необходимо  выяснить  влияние изменения структуры системы на ее устойчивость
  3.  критерий устойчивости  Найквиста – для сложных систем, если характеристики экспериментальные, кроме того позволяет исследовать системы, характеристики которых отличны от дробно рациональных
  4.  в вычислительном аспекте критерии Найквиста и Михайлова подобны
  5.  используя критерии устойчивости, можно определить параметры СУ, выводящие ее на границу устойчивости.

Так же разработан и широко используется логарифмический критерий устойчивости Найквиста:

  1.  Замкнутая система будет устойчива, если (ср)>0.
  2.  Замкнутая система будет устойчива, если для разомкнутой системы L()<0.

5.3. Запасы устойчивости СУ.

  Факта о наличии устойчивости системы иногда оказывается недостаточно, чаще требуется оценить величину запаса устойчивости, т.е. степени удаленности системы от границы устойчивости. Это необходимо для того, что система, находящаяся по расчету близко к границе устойчивости при реализации может оказаться неустойчивой. Причиной этого может оказаться неточность реализации, неточности  математического описания системы, неучтенные возмущения и т.д.

  Алгебраические критерии устойчивости дают качественные понятия об устойчивости.

  Частотные критерии устойчивости дают представление о запасах устойчивости:

  1.  По фазе
  2.  По амплитуде L

- запас устойчивости по фазе

с – запас устойчивости по амплитуде (L=20*log(c))

При проектировании системы запасы устойчивости принято принимать следующими:

С = 0,2 0,4 (L 6  20 дБ)

= 30º 60º

5.4. Понятие об областях устойчивости.

Рассмотренные критерии устойчивости позволяют определить устойчивость системы управления с заданными параметрами или исследовать влияние параметров системы на её устойчивость, например определить критическое значение коэффициента передачи.

При проектировании системы важно знать не только то, что система устойчива, но важно также знать диапазон изменения параметров системы управления в пределах её устойчивости. Для этого строятся графики, определяющие граничные значения устойчивых параметров системы.

Рассмотрим построение границ устойчивости на примере. Пусть система управления состоит из П - регулятора и звена третьего порядка:

       U                             Wp(p)  Wo(p)                       Y

Wp(p)=Kp ;

Определить критическое значение коэффициента передачи системы, выводящее замкнутую систему на границу устойчивости.

РЕШЕНИЕ:

Решим с использованием критерия устойчивости Найквиста:

Wраз(j)= –1

   Wраз()=1

   

   ()= –

,

К=КрКо

 

 раз()= –3*arctg(T)= –

arctg(T)= / 3

T =   = / T

Подставляем  в первое уравнение и определяем Ккрит :

  Ккрит=8

Значит КоКр < 8, Кр=8/Ко

             kp

                                                                 

  Неуст.      Неуст.  

       Уст.                                 

                      ko

 Неуст.       Неуст.

Для построения областей устойчивости применяются специальные методы:

  •  Метод Вышнеградского
  •  Метод корневого годографа
  •  Метод D-разбиения плоскости одного параметра
  •  Метод D-разбиения плоскости двух параметров


n=2

n=1

n=3

n=4

n=5

j

Re

j

                               Re

не уст.

на гран. уст.

уст.

j

-1

+

j

+

-1

j

=0

=

+

-

j

ср

-1

+

o

0

o

-1

+

c

j

неустойчивая область

устойчивая область

К

0   1   2    3   4    5    6   7  8    9   10   

c


 

А также другие работы, которые могут Вас заинтересовать

42703. ИССЛЕДОВАНИЕ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ 275.5 KB
  Диффузия основных носителей заряда через границу раздела р и nобластей создает ток диффузии в рnпереходе равный сумме электронного и дырочного токов: Уход основных носителей заряда из слоев вблизи границы в соседнюю область оставляет в этих слоях нескомпенсированный неподвижный объемный заряд ионизированных атомов примеси: уход электронов положительный заряд ионов доноров в nобласти а уход дырок отрицательный заряд ионов акцепторов в робласти рис. В результате появления потенциального барьера диффузионный ток уменьшается. Движение...
42704. Программирование вложенных циклов и матричных задач 174 KB
  В самом начале для удобстава пользователю предоставляется менюшка с выбором действий. 1-ручное заполнение матрицы, 2 – рандомное и выход из программы. Эта реализация выполняется спомощь оператора switch (+ разумеется выбор действий case 1, case 2, case 3). После того как матрица будет заполнена программа по условию задачи с помощью цикла for переберает каждый эл. матрицы по диагонале и ищет отрицательный эл. если не находит то выводит сообщение “Отрицательные числа в диагонале отсудствуют”.
42705. Инструкции по движению поездов и маневровая работа, конспект лекций 218.5 KB
  Правила приема, отправления и пропуска поездов при различных устройствах сигнализации, централизации и блокировки на железнодорожных станциях и средствах сигнализации и связи при движении поездов, как в нормальных условиях, так и в случаях их неисправности...
42706. Міжнародна система інтелектуальної власності 59.5 KB
  Основою міжнародної системи інтелектуальної власності на сьогодні є 22 угоди, 14 з яких регулюють правовідносини у сфері промислової власності, а вісім відносяться до авторського права і суміжних прав. Україна приєдналася до більшості
42707. Изучение массивов в языке ANSI C 1.8 MB
  Задача лабораторной работы состоит в практическом освоении массивов, совмещения их с функциями ввода и вывода, математическими функциями в одном приложении, написание приложения по индивидуальному варианту.
42708. Розпорядження майновими правами інтелектуальної власності, курс лекцій 1.35 MB
  Придбання прав інтелектуальної власності є засобом стратегії розвитку субєкта господарювання, спрямованої на оптимальне економічне використання такого обєкту не тільки в інтересах сторін договору, але й в інтересах широкої громадськості.
42709. ИССЛЕДОВАНИЕ ДИОДНЫХ ОГРАНИЧИТЕЛЕЙ И ДИОДНЫХ ФОРМИРОВАТЕЛЕЙ 155.5 KB
  Краткие теоретические сведения Основная функция положительных диодных ограничителей заключается в том чтобы повторять амплитуду входного напряжения если она не превышает заданный порог а при превышении поддерживать амплитуду выходного напряжения на пороговом уровне. Отрицательные диодные ограничители работают аналогично: амплитуда напряжения на выходе повторяет входную если она выше порогового уровня. В схемах диодных формирователей амплитуда выходного напряжения равна сумме амплитуды входного напряжения и некоторой постоянной...
42710. ЯЗЫКИ ПРОГРАММИРОВАНИЯ. ПРОЦЕДУРЫ И ФУНКЦИИ 145.5 KB
  функция печати массива чисел диапазона от n до 2n не возвращает значения принимает указатель на массив чисел и размер массива void ProstNumunsigned long int; функция инициализации массива простыми числами не возвращает значения принимает указатель на массив чисел и размер массива unsigned EnterNumvoid; функция ввода натурального числа возвращает натуральное число значений не принимает void Find_Twinsunsigned long...
42711. АЛГОРИТМИЗАЦИЯ ЗАДАЧ ОБРАБОТКИ ДИНАМИЧЕСКИХ МАССИВОВ 92.5 KB
  Введите натуральное целое число: ; cin n; cout n ; генерация случайных чисел flot p = new flot [n21]; создание динамического массива вещественных чисел на i элементов srnd timeNULL ; forint k=0; k n21; k { p[k] = flotrnd RND_MXrnd100 rnd50; заполнение массива случайными числами printf = 3. Начало cout введите натурасльное целое число: ; cin n; нет да forint k=0; k n21;...