29830

Метод корневого годографа

Лекция

Математика и математический анализ

Метод Dразбиения плоскости двух параметров В некоторых случаях критерии устойчивости позволяют проследить влияние параметров на устойчивость системы. Существуют специальные методы построения областей устойчивости. Пусть при некотором  = крит корень характеристического уравнения попадает на мнимую ось тогда при значении крит система находится на границе устойчивости. Если  это коэффициент передачи то при  крит система устойчива  = крит система находится на границе устойчивости  крит система неустойчива.

Русский

2013-08-21

145 KB

14 чел.

Лекция № 6

6.1. Метод корневого годографа

6.2. Метод Вышнеградского

6.3. Метод D-разбиения плоскости одного параметра

6.4. Метод D-разбиения плоскости двух параметров

В некоторых случаях критерии устойчивости позволяют проследить влияние параметров на устойчивость системы. Существуют специальные методы построения областей устойчивости.

6.1. Метод корневого годографа

Корневой годограф:

Пусть , где

D(p)=dnpn+dn-1pn-1+…+d0

di , i=(целые значения)

di функции параметров системы

Если приравнять D(p) к 0 и определить корни pi ,i=, то эти корни также будут функциями параметров системы.

pi=I()+ji()функция параметра

- чаще всего коэффициент передачи системы.

Если значение будем менять от 0 до , то все корни характеристического уравнения (pi ,i=) в пространстве комплексной плоскости будут перемещаться по некоторым траекториям.

Корневым годографом называется геометрическое место корней характеристического уравнения системы D(p)=0, при изменении одного из параметров системы от 0 до .

Пусть при некотором = крит корень характеристического уравнения попадает на мнимую ось, тогда при значении крит система находится на границе устойчивости. Если - это коэффициент передачи, то при < крит система устойчива, = крит система находится на границе устойчивости, > крит система неустойчива.

Пример:

Пусть система управления имеет , D(p)=0 имеет 3 корня: p1= –0,5*K

              p2,3= (K-10)jK

Определить и изобразить график корневого годографа и определить Ккрит для системы.

К

p1

p2,3

0

1

2

5

10

15

0

-0,5

-1

-2,5

-5

-7,5

-10

-9 j

-8 j2

-5 j5

j10

5 j15

Из графика видно, что Ккрит=10 

Система устойчива при K<10

Метод корневого годографа для ручного счета сложен, если порядок уравнения > 3.

6.2. Метод Вышнеградского

Уравнение:

a0p3+a1p2+a2p+a3=0

путем замены переменных можно представить в форме Вышнеградского:

z3+Az2+Bz+1=0

, ,

Параметры А и В называются параметрами Вышнеградского. Если рассмотреть плоскость параметров А и В для их положительных значений, то изображению мнимой оси в комплексной плоскости будет соответствовать уравнение АВ=1 в плоскости Вышнеградского, т.е. АВ=1 – граница устойчивости.

Кроме определения устойчивых и неустойчивых областей Вышнеградский построил кривые, позволяющие судить о форме переходного процесса.

Недостатки метода:

  1.  Область применения метода ограничена уравнениями третьего порядка.
  2.  Исследуемые параметры системы, например Кр и Т неявным образом входят в параметры А и В. Поэтому выявление областей устойчивости в пространстве параметров системы требует дополнительных трудоемких расчетов.

Критерий Вышнеградского совпадает с критерием Гурвица, если записать:

=

  1.  A > 0
  2.  AB-1 > 0 AB > 1

Метод Вышнеградского удобен для качественного анализа и для количественных расчетов в настоящее время не применяется.

6.3. Метод D-разбиения плоскости одного параметра

Задана , требуется определить влияние на устойчивость системы, т.е. границы изменения в устойчивом состоянии.

Представим D(p)=R(p)+ *Q(p), где - линейно входит в уравнение.

Перейдем к D(j)=R(j)+*Q(j), если D(j) приравнять к 0, то из этого уравнения мы определим , фактически это отношение – функция, т.е. - комплексный параметр, если изменить от 0 до , то комплексная функция (j) опишет некоторую кривую, которую будем называть границей D-разбиения. Поскольку при построении этой кривой полагали p=jw, т.е. предполагалось движение по мнимой оси комплексной плоскости, то полученная кривая D-разбиения трансформирует мнимую ось в плоскость параметра (j) 

Т.к. (j) симметрична относительно вещественной оси, то её дополняют зеркальным отражением.

После построения границы D-разбиения необходимо отметить предполагаемые области устойчивости. Для этого границу D-разбиения штрихуют по следующим правилам:

  1.  при изменении частоты от - до + в плоскости корней характеристического уравнения устойчивая область расположена слева от линии оси. Также штрихуем левую часть кривой от - до +.
  2.  Часть плоскости, в сторону которой направлены штрихи, является предполагаемой областью устойчивости, ей дают название D(0). 
  3.  По физическому смыслу параметры системы – вещественные величины, поэтому в качестве устойчивых значений параметров будем рассматривать только вещественную ось, т.е. [R1,R2] система устойчива; [R1,R2] – система неустойчива.
  4.  В большинстве случаев исследуемый параметр может принимать только положительные значения, тогда [R0,R2]система устойчива; [R0,R2] – система неустойчива.

Выводы: 1) Результаты, полученные по методу D-разделения нельзя считать окончательными. Для окончательного решения вопроса об устойчивости системы надо выбрать какое-то значение параметра из предполагаемой области устойчивости (например R3), подставить в D(p) и проверить устойчивость системы по любому критерию. Если система устойчива, то полученная область D(0) является устойчивой.

   2) Расчеты по методу D-разбиения достаточно сложны, обычно этот метод используют для расчетов на ЭВМ (пакет TAY2), т.к. метод хорошо поддается программированию.

Пример:

Построить границу замкнутой системы управления и определить Кгран, при котором замкнутая система устойчива.

Посчитаем:

D(p)=K+(1+2p)(1+0,5p)=K+1+2,5p+p2

D(j)=K+1+j2,5-2=(K+1-2)+j(2,5)

D(j)=0, тогда

K(j)=(2-1)-j2,5 

0

1

K

-1

-2,5j

-j

K>-1, ограничиваем до К>0, тогда Кгран=0

6.4. Метод D-разбиения плоскости двух параметров

При исследовании систем, в некоторых случаях необходимо построить область устойчивости в пространстве двух и более параметров.

Рассмотрим два параметра: и . Надо сгруппировать D(p) так: D(p)= *P(p)+*Q(p)+R(p)=0

Kp=

4

Далее положим p=j, тогда P(p),Q(p) и R(p) будут содержать действительную и мнимую составляющие; тогда из уравнения D(j)=0 мы можем получить:

Разделим уравнение на действительные и мнимые составляющие:

С учетом этих двух систем можно записать:

В этих уравнениях R1 и R2 не зависят от переменных и , поэтому переносим их вправо:

В этой системе два уравнения и два неизвестных и , т.е. эта система разрешима.

.

Все определители являются функциями частоты:

=F()

1=F1()

2=F2()

Поэтому и решения и - также функции частоты.

Задавая различные от 0 до можно построить границу разделения плоскости и , при этом между и существует функциональная зависимость, т.е. =f()

Например:

Функциональная зависимость получается в том случае, когда 0.

Тогда каждому значению частоты соответствуют значения и . Эта граница является трансформацией мнимой оси пространства комплексных корней.

Кривая D-разбиения плоскости двух параметров обладает следующими свойствами:

  1.  D-кривая несимметрична относительно вещественной оси, т.е.  ()=-(-) ;
  2.  Достаточно построить D-кривую только для частот >0;

для частот <0 она будет повторяться и идти этим же самым образом.

  1.  Если при некотором значении частоты =1 все определители  системы равны нулю, то система неразрешима, и одно из уравнений системы приводит к уравнению прямой. Такая прямая называется особой прямой. В большинстве  случаев особые прямые получаются при =0 или при =.

Для определения устойчивости системы в плоскости параметров и необходимо выделить устойчивые и неустойчивые области. Выделение таких областей происходит с помощью специальной штриховки.

Правила штриховки:

>0       <0

  1.  граница штрихуется слева при движении в сторону  возрастания , если >0 и справа – если  <0.
  2.  т.к. граница D-разбиения при >0 и <0 совпадает, то граница штрихуется дважды с одной и той же стороны
  3.  штриховка особых прямых одинарная и производится так, чтобы вблизи точек пересечения с D-кривой заштрихованные и не заштрихованные области прямой и кривой совпадали.

Теперь мы можем выделить устойчивые и неустойчивые области.

Выводы:

  1.  при построении границы D-разбиения следует правильно  ориентировать оси :

    горизонтальная – 1-ый параметр уравнения

    вертикальная – 2-ой параметр уравнения ;

  1.  При построении D-кривой может оказаться, что на некоторой частоте =0 и дальше <0, в этом случае штриховка должна быть изменена:

  Если имеется особая прямая, то её штриховка тоже меняется.

  1.  метод D-разбиения требует строгого соблюдения формальных  процедур, иначе его применение может привести к грубым  ошибкам .
  2.  найденные области устойчивости должны проверяться на устойчивость одним  их  известных  методов  для произвольной  точки  из  области D(0). Если при  выбранных  параметрах  система устойчива, то область D(0) будет устойчива.
  3.  Метод D-разбиения считается обобщенным критерием устойчивости, т.к. все рассмотренные ранее критерии могут быть доказаны, исходя из представления границы D-разбиения.
  4.  Для систем высокого порядка число варьируемых параметров может быть равно 3,4 и т.д. В трехмерном случае получается некоторый объем устойчивости, ограниченный трехмерной поверхностью – границей устойчивости. В общем случае N варьируемых параметров области устойчивости представляют собой многомерный объем в N-мерном пространстве.
  5.  С помощью метода D-разбиения целесообразно проводить расчеты на ЭВМ с использованием пакетов программ (TAY2 и др.)


-10

-10

10

+

j

А

В

1

2

3

4

АВ>1

АВ<1

R1

R3

R2

R0

j

j

+

+

Плоскость корней

=0

=

=0

=

Уст.

Неуст.

D(0)

D(1)

D(1)

D(1)

j

+

D(1)

D(0)

2,5

-2,5

-1

=0

=0

Особая

прямая

Граница

D-разбиения

D(0)

D(0)

D(0)

D(1)

D(1)

D(1)

D(1)

D(1)

D(0)

D(1)

D(0)

D(0)

D(1)

>0

=0

<0

=

=0

=0


Данной работой Вы можете всегда поделиться с другими людьми, они вам буду только благодарны!!!
Кнопки "поделиться работой":

 

А также другие работы, которые могут Вас заинтересовать

43105. Разработка печатного узла 2.69 MB
  Монтаж на поверхность – это крепление и монтаж компонентов специальной конструкции непосредственно на поверхность печатной платы. Взамен их для присоединения к плате используются металлизированные торцы корпусов компонентов или настолько миниатюрные выводы что они в незначительной мере увеличивают площадь платы для монтажа такого компонента. В общем виде проектирование конструкции печатного узла и технологии его изготовления в данной курсовой работе состоит из следующих глав: анализ технического задания; разработка конструкции узла;...
43106. Моделирование современной котельной установки 328.5 KB
  При выборе модели необходимо учитывать: модель должна наиболее полно отражать характер потоков вещества и энергии при одновременно достаточно простом математическом описании; параметры модели могут быть определены экспериментальным или другим способом; следует принимать во внимание что с изменением гидродинамического режима системы могут изменяться виды моделей; тип математической модели существенно влияет на вид уравнений используемых для построения математического описания. При составлении математической модели: устанавливаются...
43107. Электрический привод системы “генератор-двигатель” 1.02 MB
  Номер варианта Закон изменения момента сопротивления рабочей машины Мсм Нм Момент инерции рабочей машины Jм в долях от момента инерции двигателя кгм2 Тип двигателя и способ его питания 4 1500 45 Постоянного тока от генератора постоянного тока Примечание: Характер момента сопротивления реактивный. Требуемую перегрузочную способность двигателя. Средняя температура нагрева изоляции двигателя не должна превышать допустимую.4 Предварительная мощность двигателя рассчитывается по нагрузочной диаграмме и тахограмме рабочей машины.
43110. Проектирование привода для ленточного конвейера 5.19 MB
  Выбирается в зависимости от скорости скольжения где вращающий момент на колесе передаточное число тихоходной ступени частота вращения червячного колеса При скорости скольжения что соответствует 2ой группе “ безоловянные бронзы и латуни при скорости скольжения для зубчатого венца червячного колеса выбираю материал – ЛАЖМц66632 отливка центробежная Допускаемые контактные напряжения : где для червяков с твердостью на поверхности витков Допускаемые напряжения изгиба вычисляются для материала зубьев червячного колеса:...
43111. Контроль і управління якістю води у водоймах 1.56 MB
  Аналітичний огляд літератури очистки стічних вод міста Елементи механічної очистки стічних вод. Елементи біологічної очистки стічних вод. Математичний апарат для моделювання очистки стічних вод. Контроль і управління якістю води у водоймах.
43112. Определение момента инерции маховика 2.43 MB
  Кинетостатический расчет механизма силовой расчет. Определение сил инерции и моментов сил инерции звеньев механизма. Определение приведенного момента сил полезных сопротивлений. Построение графика приведенных моментов сил полезного сопротивления и движущих сил.
43113. Модернизация электропривода скиповой лебёдки ЛС15 для доменной печи №1 ОАО «Косогорского металлургического завода» 6.15 MB
  Двухдвигательная скиповая лебёдка с возможностью работы от одного двигателя обуславливает разработку равноценной по надёжности системы управления. Применены три системы электропривода, две основных и одна резервная, что позволяет иметь семь вариантов электроуправления скиповой лебёдкой.