29830

Метод корневого годографа

Лекция

Математика и математический анализ

Метод Dразбиения плоскости двух параметров В некоторых случаях критерии устойчивости позволяют проследить влияние параметров на устойчивость системы. Существуют специальные методы построения областей устойчивости. Пусть при некотором  = крит корень характеристического уравнения попадает на мнимую ось тогда при значении крит система находится на границе устойчивости. Если  это коэффициент передачи то при  крит система устойчива  = крит система находится на границе устойчивости  крит система неустойчива.

Русский

2013-08-21

145 KB

14 чел.

Лекция № 6

6.1. Метод корневого годографа

6.2. Метод Вышнеградского

6.3. Метод D-разбиения плоскости одного параметра

6.4. Метод D-разбиения плоскости двух параметров

В некоторых случаях критерии устойчивости позволяют проследить влияние параметров на устойчивость системы. Существуют специальные методы построения областей устойчивости.

6.1. Метод корневого годографа

Корневой годограф:

Пусть , где

D(p)=dnpn+dn-1pn-1+…+d0

di , i=(целые значения)

di функции параметров системы

Если приравнять D(p) к 0 и определить корни pi ,i=, то эти корни также будут функциями параметров системы.

pi=I()+ji()функция параметра

- чаще всего коэффициент передачи системы.

Если значение будем менять от 0 до , то все корни характеристического уравнения (pi ,i=) в пространстве комплексной плоскости будут перемещаться по некоторым траекториям.

Корневым годографом называется геометрическое место корней характеристического уравнения системы D(p)=0, при изменении одного из параметров системы от 0 до .

Пусть при некотором = крит корень характеристического уравнения попадает на мнимую ось, тогда при значении крит система находится на границе устойчивости. Если - это коэффициент передачи, то при < крит система устойчива, = крит система находится на границе устойчивости, > крит система неустойчива.

Пример:

Пусть система управления имеет , D(p)=0 имеет 3 корня: p1= –0,5*K

              p2,3= (K-10)jK

Определить и изобразить график корневого годографа и определить Ккрит для системы.

К

p1

p2,3

0

1

2

5

10

15

0

-0,5

-1

-2,5

-5

-7,5

-10

-9 j

-8 j2

-5 j5

j10

5 j15

Из графика видно, что Ккрит=10 

Система устойчива при K<10

Метод корневого годографа для ручного счета сложен, если порядок уравнения > 3.

6.2. Метод Вышнеградского

Уравнение:

a0p3+a1p2+a2p+a3=0

путем замены переменных можно представить в форме Вышнеградского:

z3+Az2+Bz+1=0

, ,

Параметры А и В называются параметрами Вышнеградского. Если рассмотреть плоскость параметров А и В для их положительных значений, то изображению мнимой оси в комплексной плоскости будет соответствовать уравнение АВ=1 в плоскости Вышнеградского, т.е. АВ=1 – граница устойчивости.

Кроме определения устойчивых и неустойчивых областей Вышнеградский построил кривые, позволяющие судить о форме переходного процесса.

Недостатки метода:

  1.  Область применения метода ограничена уравнениями третьего порядка.
  2.  Исследуемые параметры системы, например Кр и Т неявным образом входят в параметры А и В. Поэтому выявление областей устойчивости в пространстве параметров системы требует дополнительных трудоемких расчетов.

Критерий Вышнеградского совпадает с критерием Гурвица, если записать:

=

  1.  A > 0
  2.  AB-1 > 0 AB > 1

Метод Вышнеградского удобен для качественного анализа и для количественных расчетов в настоящее время не применяется.

6.3. Метод D-разбиения плоскости одного параметра

Задана , требуется определить влияние на устойчивость системы, т.е. границы изменения в устойчивом состоянии.

Представим D(p)=R(p)+ *Q(p), где - линейно входит в уравнение.

Перейдем к D(j)=R(j)+*Q(j), если D(j) приравнять к 0, то из этого уравнения мы определим , фактически это отношение – функция, т.е. - комплексный параметр, если изменить от 0 до , то комплексная функция (j) опишет некоторую кривую, которую будем называть границей D-разбиения. Поскольку при построении этой кривой полагали p=jw, т.е. предполагалось движение по мнимой оси комплексной плоскости, то полученная кривая D-разбиения трансформирует мнимую ось в плоскость параметра (j) 

Т.к. (j) симметрична относительно вещественной оси, то её дополняют зеркальным отражением.

После построения границы D-разбиения необходимо отметить предполагаемые области устойчивости. Для этого границу D-разбиения штрихуют по следующим правилам:

  1.  при изменении частоты от - до + в плоскости корней характеристического уравнения устойчивая область расположена слева от линии оси. Также штрихуем левую часть кривой от - до +.
  2.  Часть плоскости, в сторону которой направлены штрихи, является предполагаемой областью устойчивости, ей дают название D(0). 
  3.  По физическому смыслу параметры системы – вещественные величины, поэтому в качестве устойчивых значений параметров будем рассматривать только вещественную ось, т.е. [R1,R2] система устойчива; [R1,R2] – система неустойчива.
  4.  В большинстве случаев исследуемый параметр может принимать только положительные значения, тогда [R0,R2]система устойчива; [R0,R2] – система неустойчива.

Выводы: 1) Результаты, полученные по методу D-разделения нельзя считать окончательными. Для окончательного решения вопроса об устойчивости системы надо выбрать какое-то значение параметра из предполагаемой области устойчивости (например R3), подставить в D(p) и проверить устойчивость системы по любому критерию. Если система устойчива, то полученная область D(0) является устойчивой.

   2) Расчеты по методу D-разбиения достаточно сложны, обычно этот метод используют для расчетов на ЭВМ (пакет TAY2), т.к. метод хорошо поддается программированию.

Пример:

Построить границу замкнутой системы управления и определить Кгран, при котором замкнутая система устойчива.

Посчитаем:

D(p)=K+(1+2p)(1+0,5p)=K+1+2,5p+p2

D(j)=K+1+j2,5-2=(K+1-2)+j(2,5)

D(j)=0, тогда

K(j)=(2-1)-j2,5 

0

1

K

-1

-2,5j

-j

K>-1, ограничиваем до К>0, тогда Кгран=0

6.4. Метод D-разбиения плоскости двух параметров

При исследовании систем, в некоторых случаях необходимо построить область устойчивости в пространстве двух и более параметров.

Рассмотрим два параметра: и . Надо сгруппировать D(p) так: D(p)= *P(p)+*Q(p)+R(p)=0

Kp=

4

Далее положим p=j, тогда P(p),Q(p) и R(p) будут содержать действительную и мнимую составляющие; тогда из уравнения D(j)=0 мы можем получить:

Разделим уравнение на действительные и мнимые составляющие:

С учетом этих двух систем можно записать:

В этих уравнениях R1 и R2 не зависят от переменных и , поэтому переносим их вправо:

В этой системе два уравнения и два неизвестных и , т.е. эта система разрешима.

.

Все определители являются функциями частоты:

=F()

1=F1()

2=F2()

Поэтому и решения и - также функции частоты.

Задавая различные от 0 до можно построить границу разделения плоскости и , при этом между и существует функциональная зависимость, т.е. =f()

Например:

Функциональная зависимость получается в том случае, когда 0.

Тогда каждому значению частоты соответствуют значения и . Эта граница является трансформацией мнимой оси пространства комплексных корней.

Кривая D-разбиения плоскости двух параметров обладает следующими свойствами:

  1.  D-кривая несимметрична относительно вещественной оси, т.е.  ()=-(-) ;
  2.  Достаточно построить D-кривую только для частот >0;

для частот <0 она будет повторяться и идти этим же самым образом.

  1.  Если при некотором значении частоты =1 все определители  системы равны нулю, то система неразрешима, и одно из уравнений системы приводит к уравнению прямой. Такая прямая называется особой прямой. В большинстве  случаев особые прямые получаются при =0 или при =.

Для определения устойчивости системы в плоскости параметров и необходимо выделить устойчивые и неустойчивые области. Выделение таких областей происходит с помощью специальной штриховки.

Правила штриховки:

>0       <0

  1.  граница штрихуется слева при движении в сторону  возрастания , если >0 и справа – если  <0.
  2.  т.к. граница D-разбиения при >0 и <0 совпадает, то граница штрихуется дважды с одной и той же стороны
  3.  штриховка особых прямых одинарная и производится так, чтобы вблизи точек пересечения с D-кривой заштрихованные и не заштрихованные области прямой и кривой совпадали.

Теперь мы можем выделить устойчивые и неустойчивые области.

Выводы:

  1.  при построении границы D-разбиения следует правильно  ориентировать оси :

    горизонтальная – 1-ый параметр уравнения

    вертикальная – 2-ой параметр уравнения ;

  1.  При построении D-кривой может оказаться, что на некоторой частоте =0 и дальше <0, в этом случае штриховка должна быть изменена:

  Если имеется особая прямая, то её штриховка тоже меняется.

  1.  метод D-разбиения требует строгого соблюдения формальных  процедур, иначе его применение может привести к грубым  ошибкам .
  2.  найденные области устойчивости должны проверяться на устойчивость одним  их  известных  методов  для произвольной  точки  из  области D(0). Если при  выбранных  параметрах  система устойчива, то область D(0) будет устойчива.
  3.  Метод D-разбиения считается обобщенным критерием устойчивости, т.к. все рассмотренные ранее критерии могут быть доказаны, исходя из представления границы D-разбиения.
  4.  Для систем высокого порядка число варьируемых параметров может быть равно 3,4 и т.д. В трехмерном случае получается некоторый объем устойчивости, ограниченный трехмерной поверхностью – границей устойчивости. В общем случае N варьируемых параметров области устойчивости представляют собой многомерный объем в N-мерном пространстве.
  5.  С помощью метода D-разбиения целесообразно проводить расчеты на ЭВМ с использованием пакетов программ (TAY2 и др.)


-10

-10

10

+

j

А

В

1

2

3

4

АВ>1

АВ<1

R1

R3

R2

R0

j

j

+

+

Плоскость корней

=0

=

=0

=

Уст.

Неуст.

D(0)

D(1)

D(1)

D(1)

j

+

D(1)

D(0)

2,5

-2,5

-1

=0

=0

Особая

прямая

Граница

D-разбиения

D(0)

D(0)

D(0)

D(1)

D(1)

D(1)

D(1)

D(1)

D(0)

D(1)

D(0)

D(0)

D(1)

>0

=0

<0

=

=0

=0


Данной работой Вы можете всегда поделиться с другими людьми, они вам буду только благодарны!!!
Кнопки "поделиться работой":

 

А также другие работы, которые могут Вас заинтересовать

12834. РОМАШКА 40 KB
  OД РОМАШКА Время проведения: основной период смены Возраст: в данном од есть разграничения по возрастам поэтому им можно пользоваться на любом отряде. Количество детей: участие в од принимает весь отряд совет: самых активных детей лучше посадить в жюри чтобы дать в...
12835. Разговор о проблемах молодежи 60.5 KB
  Разговор о проблемах молодежи Разговор представляет собой специфичную театральную постановку и требует большой подготовки и отдачи. Зачастую подростки испытывая ту или иную проблему боятся заговорить о ней. Участники Разговора поднимают темы тревожащие подро
12836. Все профессии нужны, все профессии важны 23 KB
  Все профессии нужны все профессии важны. Задачи: развитие фантазии умения находить интересное в обыденных занятиях. Период смены: после орг. периода. Возраст детей: 812 лет. Продолжительность:3040 минут. Количество детей: весь отряд. Место проведения: свободное...
12837. ПОЙМИ МЕНЯ 28 KB
  ПОЙМИ МЕНЯ Задачи: развитие ассоциативного мышления развитие речи сообразительности. Период смены: основной период. Возраст детей: все отряды. Продолжительность:1 час. Количество детей: 2 команды по1/2 отряда. Место провидения: площадка перед корпусом чтобы...
12838. ПАРА ЛАСКОВЫХ 22.5 KB
  ПАРА ЛАСКОВЫХ. Задачи: снять агрессию избежать конфликтных ситуаций дать возможность детям разрядиться. Период смены: 911 дней. Возраст детей: 13 и старше Продолжительность: 30 минут. Количество детей: 5 и более. Место проведения: помещение или место на природе...
12839. Сюжетно-ролевая игра «НОЧЬ ТРИФФИДОВ» 67 KB
  Сюжетноролевая игра НОЧЬ ТРИФФИДОВ Сюжетноролевая игра Ночь Триффидов создана по мотивам произведения Джона Уиндема День триффидов€.Возраст участников игры колебался от 13 до 45 лет. ПОДГОТОВКА К ИГРЕ: Особенно интересна ситуация когда играть будет большое к
12840. НАЙДИ СВОЮ 20.5 KB
  НАЙДИ СВОЮ. Задачи: сдружить и сплотить мальчиков и девочек. Период смены: вторая половина основного или заключительный период. Возраст детей: от 14 лет. Продолжительность: Количество детей: 1020 человек. Место проведения: отрядное место. Оборудование: ...
12841. КОРАБЛЕКРУШЕНИЕ 31 KB
  КОРАБЛЕКРУШЕНИЕ. Задачи: снять агрессию избежать конфликтных ситуаций дать возможность детям разрядиться. Период смены: 35 дней. Возраст детей: 12 и старше Продолжительность: около 1 часа. Количество детей: 1030 человек. Место проведения: помещение или место на п...
12842. ОД на ЗНАКОМСТВО 27 KB
  ОД на ЗНАКОМСТВО. Задачи: познакомить детей друг с другом выявить лидера. Период смены: первый день орг. периода. Возраст детей: все отряды. Продолжительность: 115 часа. Количество детей: весь отряд. Место проведения: лужайка или помещение. Оборудование: повязк...