29841

Дискретные системы управления. Математическое описание дискретных сигналов

Лекция

Математика и математический анализ

Свойства спектра дискретного сигнала и погрешности восстановления непрерывного сигнала. Аналитическое представление такого сигнала Аналитическое представление АИМ сигнала формула При представлении дискретного сигнала в виде числовой последовательности отсутствует время t поэтому к числовым последовательностям не применимы интегральные преобразования.

Русский

2013-08-21

325.5 KB

28 чел.

                                     - 1 -

                             Лекция № 1.

                        Дискретные системы управления.

                   Математическое описание дискретных сигналов.

  1.  Модели дискретных сигналов.
    1.  Математическое описание дискретных сигналов. Дискретное преобразование Лапласа. Дискретное преобразование Фурье.       Zпреобразование.
    2.  Свойства  Z-преобразования.
    3.  Свойства спектра дискретного сигнала и погрешности восстановления непрерывного сигнала.
    4.  Теорема Котельникова.

   Дискретной системой управления будем считать систему, в которой хотя бы один элемент функционирует в дискретном временном пространстве и определяется дискретными состояниями.

                                              Теория ДСУ:

                           Анализ                                       Синтез

   При анализе дискретных систем управления (ДСУ) будем изучать процессы в ДСУ, их количественные и качественные характеристики.

   При синтезе ДСУ определяются структура и значения параметров ДСУ, при которых система удовлетворяет предъявляемым требованиям.

  1.  Модели дискретных сигналов.

   Рассмотрим классификацию дискретных сигналов:

                                          Дискретные сигналы.

Собственно дискретные             Импульсные                   Цифровые

           сигналы.                               сигналы.                        сигналы.   

 

   Дискретный сигнал – это сигнал квантованый по времени и непрерывный по уровню: ST(t) – временное представление; ST(t) – дискретная последовательность чисел.

   Импульсный сигнал – это сигнал, модулирующий импульсы любой стандартной формы (прямоугольной, треугольной, экспоненциальной, косинусоидальной): SИ(t).

 

                                                - 1 -

  

 Цифровой сигнал – это сигнал дискретный по времени и квантованный по уровню: SЦ(t).

   Примеры:  

   T-интервал дискретизации.        

S(t)

5                                                                                            Рис 1.1

4                                                                

3

2

1

0                                                     t

       T     2T     3T     4T     5T  

    

   На рис 1.1 изображен непрерывный по времени и уровню сигнал S(t)

SТ(t)

5                                                                                             Рис 1.2

4

3

2

1

0                                                    t

       T     2T     3T     4T    5T

   На рис 1.2 сигнал S(t) представлен дискретными  отсчетами. Этот сигнал является дискретным по времени и непрерывным по уровню. Аналитическое представление такого сигнала:

   ST(t)={0; 1.3; 2.0; 2.7; 4.2; 5.0}={Sk, k=0,1,2,3,4,5}           (1)                           

 

SИ(t)

5                                                                                             Рис 1.3

4

3

2

1

0                                                    t

       T     2T     3T     4T    5T

   На рис 1.3 изображен АИМ сигнал (с амплитудно-импульсной модуляцией). Аналитическое представление АИМ сигнала – формула (2).

                                                               -3-    

                                                           (2)

  В формуле (2) f(t-kT) – единичный импульс несущего колебания, учитывает форму и вид модуляции.   

   Пусть длительность импульсов на рис 1.3 равна *Т, где . Тогда АИМ сигнал можно записать в виде (3).

                                                                                   (3)

   

   Для прямоугольной последовательности справедлива формула (4).

                

                                                        (4)

 

SЦ(t)

5                                                                                            Рис 1.4

4

3

2

1

0                                                    t

       T     2T     3T     4T     5T

   На рис 1.4 представлен цифровой сигнал SЦ(t), являющийся дискретным по уровню и по времени. Выражение (5) – его аналитическое представление.

                                                             (5)

   Таким образом, из-за ошибки квантования цифровой сигнал нелинейно связан с исходным непрерывным сигналом. Методы анализа цифровых сигналов сложны, однако, для современных вычислительных машин можно считать ошибку квантования приблизительно равной нулю и для анализа цифровых систем использовать анализ дискретных систем, в котором применяется более совершенный и простой математический аппарат.

  

  

                                                          -4-

   При представлении дискретного сигнала в виде числовой последовательности отсутствует время t, поэтому к числовым последовательностям не применимы интегральные преобразования. Однако их использование удобно при математическом описании систем, при анализе и синтезе систем.

   Устранить это затруднение можно, если числовые последовательности заменить модулированными -импульсными последовательностями.

                                                          (6)

   Функция (6) является функцией единичной площади, то есть

                                                                   (7)  

   Если в качестве несущего колебания использовать -импульс, то:

 

                                                       (8)

   Тогда дискретный сигнал как функция времени можно записать выражением (9):

                                                  (9)

   Для рис 1.3 выражение (9) перепишется в виде:   

   Выводы:

  1.  В дальнейшем в качестве дискретного сигнала будем рассматривать амплитудно-импульсно моделированный сигнал, в качестве несущей импульсной последовательности которой используется -импульсная последовательность, т.е. дискретный сигнал будем представлять в виде модулированной -импульсной последовательности.
  2.  В полученном представлении имеется переменная t, следовательно для анализа можно использовать интегральные преобразования и весь математический аппарат который был использован для анализа и синтеза систем с непрерывным временем. Результаты анализа дискретных систем будут справедливы и для цифровых систем, при

                                                       - 5 -

этом ошибка квантования для линейных систем может быть учтена на основе метода суперпозиций.

                                                                 (10)

 

   Выражения (10)  показывает, что цифровой сигнал равен дискретному, плюс – минус ошибка квантования.

                                                   

                                                                                               Рис 1.5

                              

   На рис 1.5 продемонстрирован принцип суперпозиции.

  1.  Математическое описание дискретных систем.

                                                                                                      Рис 2.1

  

   На рис 1.6 показаны возможные переходы из одного пространства переменных в другое. Рассмотрим эти преобразования подробнее.

  1.  Дискретное преобразование Лапласа.

   Пусть имеем непрерывную функцию x(t), для которой справедливо (11),

                                                         - 6 -

                 

                                                            (11)        

тогда для     верно

                            (12)

   Полученное выражение (12) является трансцендентной функцией, оно неудобно для расчетов.

   2.Преобразование Фурье дискретного сигнала.

   Пусть имеем непрерывную функцию x(t), для которой справедливо выражение (13),

                  

                                                              (13)

тогда для сигнала (14)

                                                        (14)

верно равенство (15)

                                                                   (15)

   Воспользуемся тем, что пространство переменной p и пространство переменной jw пересекаются в точке p=jw. Получаем выражение (16)

                                       (16)

   Анализ:

   1.Преобразование Фурье дискретного сигнала (ПФДС) есть непрерывная функция частоты w.

   2.Преобразование Фурье дискретного сигнала есть периодическая функция по частоте w, где период по частоте равен

   3.Преобразование Фурье дискретного сигнала есть комплексная функция, следовательно, можно изобразить её в виде годографа или в виде совокупности амплитудного (17) и фазового (18) спектров.

                                                                       (17)

                

                                                         - 7 -  

                                                                (18)  

    Во многих практических приложениях удобно работать не с непрерывным спектром, а  с отсчётами непрерывного спектра. Для этого производится дискретизация комплексного спектра дискретного сигнала.

    Выбираем частоту дискретизации w1. C этой частотой берутся отсчёты.

            

                                                 (19)    

     (19)-один отсчёт непрерывного спектра.

     Дискретное преобразование Фурье:

              

      Выразим дискретный спектр через отсчёты дискретного сигнала (20).

                              (20)

   3.Z-преобразование.  

   Z преобразование существенно упрощает анализ дискретной системы, так как преобразует трансцендентные функции переменной p в рациональные функции аргумента z.     

           

              

                                   (21)   

                                           

   Для адекватного представления необходимо, чтобы ряд (21) сходился, то есть  

   Выводы:

   Z преобразование – наиболее удобный метод для расчёта дискретных систем.

   В Z преобразовании переменная  имеет смысл задержки сигнала на k тактов.

                                                    - 8 -

   Расчёты существенно упрощаются, так как существуют таблицы Z преобразований для наиболее часто используемых на практике непрерывных функций.    

  1.  Свойства Z преобразования.

  1.  Линейность.

  1.  Сдвиг оригинала.

  1.  Начальное значение.

  1.  Конечное значение.

 

  1.  Модифицированное Z преобразование.

Оно используется, когда оригинал запаздывает, а время запаздывания не кратно тактовому интервалу (22).

, где                                                  (22)

   Выясним связь между комплексным пространством p-плоскости и комплексным пространством z-плоскости.

                                     

 

                                                      - 9 -   

 

                       p-плоскость                                             z-плоскость

                                   j                                                                 j

                            w                вектор                                   y               точка                                             

                                                        +                                                             +    

                                            σ                                                             x

   Примеры:

   1) p=0, z=1

                       p-плоскость                                             z-плоскость

                                   j                                                                 j

                                                        +                                                             +    

                             0                                                                         1

  

    2) p=jw, z=e jwT

        

                       p-плоскость                                             z-плоскость

                                   j                                                                 j

                                                        +                                               1            +    

                                                                                                      

- 10 -

        

     3)    

        

                       p-плоскость                                             z-плоскость

                                   j                                                                 j

                                                        +                                                             +    

                                                                                                         1   

  

4)

      

                 

                       p-плоскость                                             z-плоскость

                                   j                                                                 j

                                                          +                                                             +    

                                                                                                           1

  

    На рис. 4) заштрихованная область является неустойчивой, а не заштрихованная – устойчивой.

  

                                                         - 11 -  

 5)

        

                       p-плоскость                                             z-плоскость

                                   j                                                                 j

                          jwT

                                                        +                                                             +    

                                                                                                      1

6)

   

                       p-плоскость                                             z-плоскость

                                   j                                                                 j

                         jwT

                                                        +                                                             +    

                                                                                                       1

7)

  

                                              - 12 -

                       p-плоскость                                             z-плоскость

                                   j                                                                 j

                         

                                                        +                                               1           +    

                                                                                               

   8)

       

                       p-плоскость                                             z-плоскость

                                   j                                                                 j

                           

                                                        +                                                             +    

                                                                                                          1

                         

 

     9)

        

                                                        - 13 -

                       p-плоскость                                             z-плоскость

                                   j                                                                 j

                           

                                                        +                                                             +    

                                                                                                           1

                        

   1.4Свойства спектра дискретного сигнала.

   Определяя преобразование Фурье, мы определяем связь спектра дискретного сигнала с отсчётами непрерывного сигнала.

      

   Определим связь спектра дискретного сигнала со спектром непрерывного сигнала.

   Пусть для непрерывного сигнала x(t) справедливо:

   

   Представим дискретный сигнал в форме:

   

   Воспользуемся соотношением (23). Сумма сдвинутых относительно друг друга -функций есть сумма комплексных экспонент.

                                                                       (23)

   Тогда

                (24)

                                                   - 14 -

   Анализ:  

   1 Получено выражение (24), связывающее спектр дискретного сигнала  со спектром непрерывного сигнала .

   2 Полученное выражение имеет геометрическую интерпретацию рис 4.1, рис 4.2.

     

                                 X(w)

                                                                                                Рис 4.1

                                                               w

                   -wc             wc 

                                T*XT(w)    

                                                                                                Рис 4.2

                                                                                         w           

                    -wc           wc         wT 

   На рис 4.1 изображён спектр непрерывного сигнала, а на рис 4.2 показан спектр дискретного сигнала. Спектр дискретного сигнала представляет собой бесконечно повторяющийся по оси частот спектр непрерывного сигнала.

    3 Представим, что дискретизацию сигнала осуществили с помощью δ-модулятора рис 4.3.

                     δ-модулятор

        x(t)                     xT(t)                          x(t)

                                                                                               Рис 4.3

                  T

  

   Для того чтобы восстановить непрерывный сигнал из дискретного, надо пропустить его через идеальный низкочастотный  фильтр с полосой пропускания (-wc; wc) рис 4.4.

                                                     - 15 -    

                                           

                                           Wф(w)   

                                                                                                Рис 4.4

                        -wф                    wфwc                 w    

   4 Если тактовая частота wT превышает величину 2wc, где wc-максимальная частота спектра сигнала, то при преобразовании дискретного сигнала в непрерывный сигнал и непрерывного сигнала в дискретный сигнал нет потери информации, так как спектр сигнала и его форма не искажаются.

   5 Если частота дискретизации wT < 2wc, то при преобразованиях происходит потеря информации, и форма сигнала искажается за счёт наложения спектральных составляющих соседних лепестков.    

                            X(w)    

                                                                                              Рис 4.5

                                                                               

              -wc               wc                                          w

                            T*XT(w)                 При сложении спектров получили

                                                           дискретный спектр XT(w).                                                                        

                                                                                                 Рис 4.6   

                -wc           wc     wT                                     w      

                            W(w)

                                                       Получили восстановленный                                                     

                                                       сигнал на выходе.  

                                                                                                 Рис 4.7  

               -wc                wc                                               w

                                                   - 16 -

  6 Наложение соседних лепестков спектра – это специфичная погрешность преобразования непрерывного сигнала в дискретный и дискретного сигнала в непрерывный. Под влиянием этой погрешности форма сигнала на выходе рис 4.7 фильтра не совпадает с формой входного сигнала рис 4.5.

   7 В силу такой погрешности при разработке дискретной системы управления надо использовать как можно меньше преобразований непрерывного сигнала в дискретный и обратно, то есть число дискретных элементов в системе должно быть минимальным.

   1.5Теорема Котельникова.

   Теорема:

   Любой сигнал, спектр которого ограничен частотой Fмакс, без потери информации может быть представлен своими отсчётами x(kT), взятыми через интервал .

            X(f)

                                                                                  Рис 5.1     

           f

                        Fмакс

   Ряд Котельникова:

   

   

    - базисная функция.                                                    

   Набор  есть ортогональный набор.

   Единичная базисная функция . Её спектр имеет прямоугольную форму, граничная частота которого .                   

                                

                                                      

                                                                                      

                                                 

                                                       - 17 -

  

   Анализ:

   1. Теорема Котельникова представляет большой интерес для теоретических исследований.

   2. Теорема Котельникова справедлива только для сигналов с конечным спектром (рис 5.1).

   3. В силу свойств пары преобразований Фурье такие сигналы бесконечны во времени.

   4. Все реальные сигналы имеют ограниченный интервал существования по времени, следовательно, они имеют бесконечный по частоте спектр.

   5. В соответствии с теоремой Котельникова такие сигналы могу быть представлены дискретной последовательностью отсчётов без потери информации с интервалом дискретизации  

  1.      6. Следовательно, все реальные сигналы могут быть представлены в дискретном виде только с потерей информации и только с искажением формы при восстановлении.

                                                      Задача:

   Записать в виде дискретного сигнала числовые последовательности, определить z-преобразование и преобразование Фурье, определить АЧХ.

   

   А)

        

         

        

        

            

         Формула Эйлера:   

         

     Б)

         

                                                           - 18 -

          

          

          

          

       В)

          

            

            

                                         

         Г)

                

             

             

             

                


 

А также другие работы, которые могут Вас заинтересовать

26877. Желудочки головного мозга 5 KB
  Желудочки головного мозга. К желудочкам головного мозга относятся: Боковые желудочки ventriculi laterales telencephalon; Боковые желудочки головного мозга лат. ventriculi laterales полости в головном мозге содержащие ликвор наиболее крупные в желудочковой системе головного мозга. Третий желудочек ventriculus tertius diencephalon; Третий желудочек мозга ventriculus tertiusнаходится между зрительными буграми имеет кольцевидную форму так как в него прорастает промежуточная масса зрительных бугровmassa intermedia thalami.
26878. Оболочки и сосуды головного и спинного мозга 4.04 KB
  Оболочки и сосуды головного и спинного мозга Головной и спинной мозг окружен тремя мозговыми оболочками meninges. В области большого затылочного отверстия оболочки головного мозга переходят в оболочки спинного мозга. 4 показаны оболочки головного мозга. Твердая оболочка спинного мозга отделена от внутренней поверхности позвоночного канала от надкостницы позвоночного канала надоболочечным эпидуральным пространством.
26879. Общие закономерности строения и ветвления спинномозговых нервов 5.94 KB
  Спинномозговые нервы от спинного мозга отходят метамерно в соответствии с делением костной основы и подразделяются на шейные грудные поясничные крестцовые и хвостовые. Черепномозговые нервы отходят от продолговатого с XII по V пару и среднего мозга IV и III пары. Черепномозговые нервы отходят преимущественно одним корнем соответствующим дорсальному или вентральному корешку спинномозгового нерва. Строение Спинномозговые или спинальные нервы 31 пара берут начало в спинном мозге и выходят из него между соседними позвонками почти по...
26880. Грудные спинномозговые нервы. Плечевое сплетение 3.12 KB
  Грудные спинномозговые нервы. Основные нервы Дорсальный нерв лопатки тп. dorsalisscapulae Надлопаточный нерв п. suprascapularrs Подлопаточные нервы шї.
26881. Поясничные спинномозговые нервы. Поясничное сплетение 3.08 KB
  Только первые 2 4 поясничных нерва имеют белые соединительные ветви но все получаютсерые соединительные ветви и делятся на дорсальные и Вентральные ветви. Дорсальные ветви идут в разгибатели йоясницы и отдают латеральные кожные ветви в ягодичные краниальные нервы nn. Вентральные ветви образуют поясничное сплетение т plexuslumbales соединяющееся с крестцовым сплетением Подвздошноподчревный нерв п. genitofemoral і s 16 начинается от L III II и IV и отдает ветви в малую поясничную квадратную поясничную и брюшные мышцы и идет по...
26882. Крестцовые спинномозговые нервы. Крестцовое сплетение 2.6 KB
  Крестцовые спинномозговые нервы эти нервы делятся на передние и задние ветви при этом передние ветви выходят на тазовую поверхность крестца в полость таза задние на дорсальную его поверхность. Задние ветви в свою очередь делятся на внутренние и наружные. Внутренние ветви иннервируют нижние сегменты глубоких мышц спины и оканчиваются кожными ветвями в области крестца ближе к средней линии. Наружные ветви I III крестцовых спинномозговых нервов направляются книзу и имеют название средних кожных нервов ягодиц пп.
26883. Седалищный нерв 5.99 KB
  Седалищный нерв Седалищный нерв п. Он и ннервирует всю конечность за исключением некоторых ягодичных мышц сгибателей тазобедренного сустава и разгибателей коленного сустава. Проходит позади тазобедренного сустава и делится на большеберцовый и малоберцовый нервы идущие в области бедра вместе по медиальной поверхности двуглавой мышцы бедра почти до коленного сустава. Малоберцовый нерв п.
26884. Морфофункциональная характеристика черепно-мозговых нервов 4.77 KB
  морфофункциональная характеристика черепномозговых нервов Каждый отдел головного мозга человека исторически связан с конкретными дистантными анализаторами хеморецепторами фоторецепторами тактильными или слуховыми системами анализа внешней и внутренней среды организма. Как правило рецепторы расположены на некотором расстоянии от мозга и соединены с ним посредством нервов. Черепные нервы устаревшее название черепномозговые нервы двенадцать пар нервов выходящих из мозгового вещества в основании мозга и иннервирующих структуры...
26885. V-я и VI 1-я пары черепно-мозговых нервов. Общая характеристика, ветвление 2.98 KB
  Двенадцать пар черепномозговых нервов принято делить на 3 чувствительных I пара обонятельный U пара зрительный и VIII пара преддверноулитковый 5 двигательных III пара глазодвигательный IV пара блоковый VI пара отводящий XI пара добавочный и XII пара подъязычный и 4 смешанных V пара тройничный VII пара лицевой IX пара языкоглоточный и X пара блуждающий; в состав последних входят чувствительные двигательные и вегетативные волокна. 5 пара тройничный нервn.