30041

Спектральный анализ дискретных сигналов

Курсовая

Информатика, кибернетика и программирование

Написать программу на языке программирования Паскаль для решения следующей задачи (вариант задания индивидуальный). Результаты расчетов должны выводиться на экран и в файл. Оформление графиков и таблиц выполнять средствами математических пакетов (Maple, MathCad)

Русский

2013-08-22

231 KB

22 чел.

Уральский технический институт связи и информатики (филиал)

Сибирского государственного университета

Телекоммуникаций и информатики

(УрТИСИ ГОУ ВПО «СибГУТИ»)

Курсовая работа.

По дисциплине

«Языки программирования».

Тема: Спектральный анализ дискретных сигналов

Выполнил: Саляхутдинов Р. Г.

Группа: МЕ-51

Екатеринбург, 2008

Задание для курсовой работы.

Написать программу на языке программирования Паскаль для решения следующей задачи (вариант задания индивидуальный). Результаты расчетов должны выводиться на экран и в файл. Оформление графиков и таблиц выполнять средствами математических пакетов (Maple, MathCad). Демонстрационный вариант программы подготовить в среде визуального программирования Delphi.

Проверить решение промежуточных задач средствами математических пакетов. Построить блок-схемы задачи и вспомогательных частей алгоритма. Оценить погрешность выполненных расчетов.

Напряжение U=U(t) на входе транзистора как функция времени описывается дифференциальным уравнением

с начальными условиями (1), где n – последняя цифра номера зачетной книжки, k – коэффициент усиления (см. ниже), fs(t) – периодический сигнал

(рис. 1), mкоэффициент  обратной связи.

Указания и пояснения.

  1.  Дифференциальное уравнение с заданными начальными условиями (задача Коши) решается методом Рунге-Кутта второго порядка с коррекцией (3) на отрезке [0;5] с шагом  h=0.01.(в узлах  tj =jh, j=0,1,2…). Функция fs(t) в правой части представляет собой регулирующий периодический (период Т) сигнал единичной амплитуды (рис 1, номер варианта  n – последняя цифра номера зачетной книжки,). Результаты расчетов—таблица (tj,Uj) и график функции U(t) (на экран и в файл).
  2.  Значение коэффициента усиления k в правой части дифференциального уравнения есть наименьший положительный корень полинома (2), который вычисляется одним из методов нахождения корней уравнения (метод касательных, метод простой итерации).
  3.  Построить спектральные характеристики периодического сигнала fs(t), заданного в аналоговой форме и в виде дискретного сигнала. Длительность сигнала равна 1, период T=k.
  4.   Период функции U(t) определить с помощью функции автокорреляции.

Курсовая работа выполняется в ЧЕТЫРЕ  этапа.

  1.  Средствами математического пакета Maple  решается задача спектрального анализа аналогового и дискретного периодического сигнала fs(t). Сравниваются спектры амплитуд аналогового и дискретного представлений сигнала. (образец выполнения задания – файл вариант11.mws).
    1.  Создается проект в визуальной среде Delphi, решающий эту же задачу для дискретного сигнала, а результаты выполнения сравниваются визуально.
      1.  С помощью языка программирования системы Maple решается задача интегрирования дифференциального уравнения (задача Коши) методом (по варианту задания). Окончательные вычисления в программе зависят от результатов расчета программы в Delphi (следующий пункт). Образец выполнения задания – файл RUTTA.mws.
        1.  Создается проект в визуальной среде Delphi, решающий ту же задачу Коши, результаты расчета которой записываются в файл,  который используется в предыдущем пункте. Выводятся графики результатов вычислений в Maple и Delphi и сравниваются между собой. Явные несовпадения свидетельствуют об ошибке в программе на  Delphi.

Оформление:

  •  Формат А4.
  •  Титул
  •  Постановка задачи
  •  Алгоритмы решения вспомогательных задач
  •  Блок-схемы
  •  Результаты расчетов, графики
  •  Литература

Индивидуальное задание № 18

  1.  Начальные условия: U(0)=0.15
  2.  полином:x^4-x^3-2
  3.  коррекция:по средней производной
  4.   метод:итерации 


Часть 1.

> restart;

> with(linalg):with(plots):with(plottools):

> fun:= proc(t) local z ;z:=piecewise(t<0,0,t<1/2,cos(Pi*t),t<=1,0,0); evalf(z);end;

> fun(t/tau);

> p(x):=x^4-x^3-2;

> Koeff:=fsolve(p(x)=0,x,0..3);

> tau:=Koeff:

> plot(p(x),x=Koeff-0.5..Koeff+0.5,thickness=2,color=black);

> R1:=plot(fun(t),t=0..2.5,thickness=2,linestyle=3,color=blue):

> R11:=plot(fun(t/tau),t=0..2.5,thickness=2,color=black):

> display(R1,R11);

> Fourier_T:=proc(F,T0,TN,k::evaln) local T;

 global A0,Ak,Bk;

   T:=TN-T0;

  A0:=2/T*Int(F(x),x=T0..TN);

  Ak:=2/T*int(F(x)*cos(k*x*2*Pi/T),x=T0..TN):

  Bk:=2/T*int(F(x)*sin(k*x*2*Pi/T),x=T0..TN):

end proc:

> Trig_polynom:=proc(N,T,a0,ak,bk,k::evaln) local n,Pol,A0,A,B;

 global a,b,RisTrig;

 a:=array(0..N);b:=array(0..N);

   A0:=evalf(a0);a[0]:=A0;b[0]:=0;

   A:=seq(evalf(subs(k=n,ak)),n=1..N);

   B:=seq(evalf(subs(k=n,bk)),n=1..N);

    for n from 1 to N do

     a[n]:=A[n];b[n]:=B[n];

    end do;

   Pol:=A0/2+sum(A[k]*cos(2*Pi*k*x/T)+B[k]*sin(2*Pi*k*x/T),k=1..N):

   RisTrig:=plot(Pol,x=-T/2..3*T/2,color=blue,thickness=2):

 RETURN(Pol);

end proc:

> ARR:=proc(n::integer,c) local L,H,ma,mi,k::integer,

  Sim::array(0..n);

  ma:=c[0];mi:=c[0];

  L:=line([0,c[0]],[n,c[n]],thickness=2,color=red);

 for k from 1 to n do

  if c[k]>ma then ma:=c[k];end if;

  if c[k]<mi then mi:=c[k];end if;

 end do;

 H:=ma-mi;

 if H=0 then RETURN(L) end;

 for k from 0 to n do

  if abs(c[k])<H/1000 then

    Sim[k]:=ellipse([k,c[k]],0.2,0.01*H,color=blue);

  else

   Sim[k]:=plottools[arrow]([k,0],[k,c[k]],0.2,0.2,0,color=black);

  end if;

 end do;

 convert(Sim,list);

end:

> Spectr:=proc(n,a,b,c,Risphi) local k,R,phi;

  for k  from 0 to n do

    c[k]:=evalf(abs(I*a[k]+b[k])):

#    print(k,c[k]);

    phi:=evalf(argument(I*a[k]+b[k]));

    R[k]:=[eval(k),eval(phi)];

  end:;

Risphi:=plot(convert(R,list)):

end:

 

> T:=3;# величина периода

> F_for_all:=proc(t) global tau;fun(t/tau);end proc:;

> Ris1:=plot(F_for_all(t),t=0..T,color=brown,thickness=2,discont=true):display(Ris1);

> Fourier_T(F_for_all,0,T,k):

> a0:=evalf(A0);

> Nk:=40;

> Trig_polynom(Nk,T,A0,Ak,Bk,k):

> display(RisTrig,Ris1);

> Spectr(Nk,a,b,c,'Risphi1');

> display(ARR(Nk,c));

>

> Ampl:=display(ARR(Nk,c)):;

> 2: DTF:=proc (y,N,Y) local n,k,j,p,h;

n:=N-1;

h:=2*Pi/N;

2.1: for k from 0 to N do

p:=0;

  for j from 0 to n do

    p:=p+evalf(y[j]*exp(-I*k*j*h));

  end;

 Y[k]:=evalf(1/N*p);

end:

end:;

> 3: CDTF:=proc(N,Y,y) local n,k,h,p,j;

n:=N-1;

 h:=2*Pi/N;

for k from 0 to n do

p:=0;

  for j from 0 to n do

    p:=p+Y[j]*exp(I*k*j*h);

  end;

 y[k]:=evalf(Re(p));

end:

end:

> Setka_DTF:=proc(Nt,T,F,Y::array) local h,j,x,R,RL;  

  global GrafF;

  h:=T/Nt;

 for j from 0 to Nt do

  x:= evalf(j*h);

  Y[j]:= F(x);

  R[j]:=[j,eval(Y[j])];

 end:

   5.1: R[Nt]:=[j,eval(Y[0])];

    GrafF:=plot(convert(R,list),0..Nt-1,color=brown,

    style=point,symbol=circle):

end:

> Spectr_DTF:=proc(n,C,A,phi) local k,R;global Risphi;

 6.1:  for k  from 0 to n do

    A[k]:=evalf(abs(C[k])):

    phi[k]:=evalf(argument(C[k]));

    R[k]:=[eval(k),eval(phi[k])];

end:;

Risphi:=plot(convert(R,list),thickness=2,color=blue,style=point,symbol=box):

end:

Параметры задачи

> Nt:=33:`число дискретных отсчетов `:

> n:=Nt;N:=Nt-1;# параметры ДПФ

> C:=array(0..n):phi:=array(0..n):A:=array(0..n):;

Y:=array(0..N):

> Setka_DTF(N,T,F_for_all,Y);

> DTF(Y,Nt,C,n):

> Spectr_DTF(n,C,A,phi):

Для четных N

> display(ARR(n,A));

> display(ARR((n-1)/2,A));

> CDTF(Nt,C,F):

> display(GrafF,ARR(n-1,F));

> Setka:=proc(Nt,T,F,Y::array) local h,j,x,R,RL;  

  global GrafF;

  h:=T/Nt;

 for j from 0 to Nt do

  x:= evalf(j*h);

  Y[j]:= F(x);

  R[j]:=[x,eval(Y[j])];

 end:

   5.1: R[Nt]:=[x,eval(Y[0])];

    GrafF:=plot(convert(R,list),0..T,color=brown,

    style=point,symbol=circle):

end:

> F_Discret:=proc (Y,N,a,b,n) local k,j,p,q,h;

 h:=2*Pi/N;

for k from 0 to n do

p:=0;q:=0;

  for j from 0 to N do

    p:=p+evalf(Y[j]*cos(k*j*h));

    q:=q+evalf(Y[j]*sin(k*j*h));

  end;

 a[k]:=2/N*p;b[k]:=2/N*q;

# print(k,a[k],b[k]);

end:

if 2*n=N then b[n]:=0; end;

RETURN(n);

end:;

> 3: Trig:=proc(t,n,T,a,b) local z,k;

z:=a[0]/2+sum(a[k]*cos(k*t*2*Pi/T)+b[k]*sin(k*t*2*Pi/T),k=1..n);

end:

> M:=Nk:

> a:=array(0..M):b:=array(0..M):c:=array(0..M);

> Setka(N,T,F_for_all,Y):

> F_Discret(Y,N,a,b,M):

> Cl:=blue,red,brown:;

> 15: RT:=seq(plot(Trig(t,8*k,T,a,b),t=-0.1..T+0.1,

numpoints=500,color=Cl[k]),k=1..3):

> 16: display(RT,GrafF);

> Spectr(M,a,b,c,'Grafphi');:

> display(ARR(M,c));:

> display(Ampl);

                                            

                                            

                                            

unit koren1;

interface

uses

 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

 Dialogs, StdCtrls, ExtCtrls;

type

 TForm1 = class(TForm)

   Button1: TButton;

   Label1: TLabel;

   Button2: TButton;

   Label2: TLabel;

   Button3: TButton;

   ListBox1: TListBox;

   Button4: TButton;

   Button5: TButton;

   Image1: TImage;

   procedure Button1Click(Sender: TObject);

   procedure Button2Click(Sender: TObject);

   procedure Button3Click(Sender: TObject);

   procedure Button4Click(Sender: TObject);

   procedure FormCreate(Sender: TObject);

   procedure Button5Click(Sender: TObject);

 private

   { Private declarations }

 public

   { Public declarations }

 end;

var

 Form1: TForm1;

implementation

{$R *.dfm}

{============================}

const

N=30;

m=N div 2;

 x0=0;

T=3;

hx=T/N;

type

koeff=array[0..m] of real;

dann=array[0..N] of real;

var

Tau:real;

Y:dann;

a,b:koeff;

h:real;

eps:real;

La:real;

Rb:real;

Nkoeff:integer;

function pol(t:real):real;

begin

 pol:=sqr(sqr(t))-sqr(t)*t-2;

end;

function derive(t:real):real;

begin

 derive:=sqr(t)*t*4-sqr(t)*3;

end;

function root(a,b:real):real;

var

X0,X1,delta:real;

begin

X0:=(a+b)/2;

repeat

  X1:=X0-pol(X0)/derive(X0);

  delta:=abs(X1-X0);

  X0:=X1;

until    delta<0.00001;

root:=X0;

end;

function riter(a,b:real):real;

var

X0,X1,delta:real;

const

lambda=0.0001;

begin

X0:=(a+b)/2;

repeat

  X1:=X0-pol(X0)*lambda;

  delta:=abs(X1-X0);

  X0:=X1;

until    delta<0.00001;

riter:=X0;

end;

function signal(t:real):real;

var

z:real;

begin  

  if t<0 then

  z:=0

  else

  if t<=1/2 then

  z:=cos(Pi*t)

  else

  if t<=1 then

  z:=0

  else z:=0;

  signal:=z;

   end;

   procedure Trig(m,N:integer;Y:dann;var a,b:koeff);

   var

   j,k:integer;

   p,q:real;

   x:real;

   h:real;

   begin

     h:=2*Pi/N;

     for k := 0 to m do

       begin

         p:=0;q:=0;

         for j := 1 to N do

           begin

             x:=j*h;

             p:=p+Y[j]*cos(x*k);

             q:=p+Y[j]*sin(x*k);

           end;

           a[k]:=p*2/N;

           b[k]:=q*2/N;

       end;

   end;

    function Tpol(m:integer;x:real):real;

var

z:real;

k:integer;

begin

 z:=a[0]/2;

  for k:=1 to m do

   z:=z+(a[k]*cos(k*2*Pi/T*x)+b[k]*sin(k*2*Pi/T*x));

  Tpol:=z;

end;

   procedure grafik(numvar:integer);

type

  dann= array[0..N] of real;

var

  L,R,W,H: integer;

  X: dann;

  Y: dann;

  k:integer;

  ymin,ymax:real;

  Mx,My:real;

  x0,y0: integer;

  posx,posy:integer;

  Nkf:string;

  tx:real;

  ypol:real;

  procedure min_max(N:integer;Y:dann; var min, max:real);

  var

    k: integer;

  begin

     min:=Y[0];max:=Y[0];

     for k := 1 to N do

     if Y[k]> max then

        max:=Y[k]

       else if Y[k]< min then

        min:=Y[k];

     {увеличим диапазон}

      max:=max+0.1;

      min:=min-0.1;

  end;

begin

  L:=20;

  R:=form1.image1.clientHeight-20;

  W:=form1.image1.Width-50;

  H:=form1.image1.clientheight-50;

  case numvar of

1: begin

     for  k:=0 to N do

       X[k]:=signal(hx*k/Tau);

     min_max(N,X,ymin,ymax);

     Mx:=W/N;

     My:=H/(ymax-ymin);

     x0:=L;

     y0:=R-abs(Round(ymin*My));

     with form1.image1.Canvas do

     begin

       pen.Color:=clblue;

       font.Name:='Tahoma';

       font.Size:=8;

       font.Color:=claqua;

       for k:=0 to N do

        begin

          posx:=x0+round(k*Mx);

          posy:=y0-round(X[k]*My);

          textout(posx-2,posy-8,'o');

          Pixels[posx,posy]:=clRed;

        end;

       pen.Width:=2;

       Moveto(L,R);lineto(L,R-H);

       moveto(x0,y0);lineto(x0+W,y0);

       font.Color:=clred;

       textout(x0+W,y0+10,'x');

       textout(x0+W,y0-20,floattostrF(T,ffFixed,3,0));

       textout(x0+round(W*Tau/T), y0-20,'tau='+ floattostrF (Tau,ffFixed, 6, 3));

       Nkf:=Inputbox('Число коэффициентов полинома','например 10','20');

       Nkoeff:=strtoint(Nkf);

       pen.Color:=clNavy;

       tx:=0;

       ypol:=Tpol(Nkoeff,tx/Tau);

        posx:=x0+round(0*Mx/2);

        posy:=y0-round(ypol*My);

       moveto(posx,posy);

       for k:=1 to 2*N do

       begin

         tx:=hx*k/2;

         ypol:=Tpol(Nkoeff,tx/Tau);

         posx:=x0+round(k*Mx/2);

         posy:=y0-round(ypol*My);

         lineto(posx,posy);

       end;

     end;

   end;

  2: begin

       for  k:=0 to m do

        Y[k]:=sqrt(sqr(a[k])+sqr(b[k]));

        min_max(m,Y,ymin,ymax);

        Mx:=W/m;

        My:=H/(ymax-ymin);

        x0:=L;

        y0:=R-abs(Round(ymin*My));

     with form1.image1.Canvas do

     begin

        pen.Width:=2;

        pen.Color:=clred;

        Moveto(L,R);lineto(L,R-H);

        moveto(x0,y0);lineto(x0+W,y0);

        pen.Width:=5;

        pen.Color:=clblue;

       for  k:=0 to m do

        begin

         posx:=x0+round(k*Mx);

         posy:=y0-round(Y[k]*My);

         moveto(posx,y0);

         lineto(posx,posy);

        end;

     end;

     end;

  end;

end;

{===============================}

procedure TForm1.Button1Click(Sender: TObject);

const

a=0; b=3;

begin

Tau:=root(a,b);

Label1.Caption:='корень='+floattostr(Tau);

end;

procedure TForm1.Button2Click(Sender: TObject);

const

a=0; b=3;

begin

Tau:=riter(a,b);

Label2.Caption:='корень='+floattostr(Tau);

Button2.Visible:=false;

Button3.Visible:=true;

Button3.SetFocus;

Button4.Visible:=false;

end;

procedure TForm1.Button3Click(Sender: TObject);

var

 j: Integer;

 s1,s2,s3:string;

 begin

for j := 0 to N do

Y[j]:=signal(x0+j*hx);

Y[N]:=(Y[0]+Y[N])/2;

Trig(m,N,Y,a,b);

for j := 0 to m do

 begin

   str(j:2,s1);

   str(a[j]:10:5,s2);

   str(b[j]:10:5,s3);

   listbox1.Items.Add(s1+s2+s3);

   end;

   label1.Caption:='Вычислены коэффициенты Фурье';

 Button3.Visible:=false;

 Button4.Visible:=true;

 Button4.SetFocus;

   end;

procedure TForm1.Button4Click(Sender: TObject);

begin

Form1.Caption:='Построение графиков';

   {здесь поместим алгоритм построения графика сигнала и триг. полинома}

   Label1.Caption:='графики сигнала и полинома';

   Button4.Visible:=false;

   Button5.Visible:=true;

   Button5.SetFocus;

   Label2.Visible:=false;

   {Label3.Visible:=false;

   Label4.Visible:=false;}

  listbox1.Visible:=false;

   grafik(1); { 1 - сигнал точками, полином - линией}

Label1.Caption:='графики сигнала и полинома';

Button4.Visible:=false

end;

procedure TForm1.Button5Click(Sender: TObject);

begin

Form1.Caption:='Спектр амплитуд';

   {здесь поместим алгоритм построения спектра амплитуд}

       Label1.Caption:='График спектра амплитуд';

   Button5.Visible:=false;

     form1.image1.Canvas.FillRect(rect(0,0,clientwidth,clientheight));

     grafik(2);

end;

procedure TForm1.FormCreate(Sender: TObject);

begin

Button2.Visible:=true;

Button3.Visible:=false;

Button4.Visible:=false;

Button5.Visible:=false;

end;

end.

Часть 2.

> restart;

> with(linalg):with(plots):

pp:=(x,y)->[x,y];

> fun:= proc(t) local z ;z:=piecewise(t<0,0,t<1/2,cos(Pi*t),t<=1,0,0); evalf(z);end;

> plot(fun(t),t=-1..2,thickness=2,color=brown);

> p(x):=x^4-x^3-2;

> Koeff:=fsolve(p(x),x,0..2);

> T:=Koeff;

> tau:=1;

> Period:=proc(t,t0,tau,T,f) local x,z;

x:=evalf(t-t0-floor((t-t0)/T)*T);

z:=fun(x/tau);evalf(z);

end;

> plot(Period(x,0,tau,T,fun),x=-1..3,thickness=2,color=brown):;

> #==============================================================================

>

> Koc:=0.2;Nzac:=4;

> ur:=diff(U(t),t);

> F:=Nzac*(cos((4+Nzac/10)*t+U(t))+Koeff*Period(t,0,tau,T,f)-Koc*U(t));

> RK:=dsolve({ur=F,U(0)=0.15},U(t),type=numeric,output=listprocedure);

> fU:=subs(RK,U(t));

> T0:=5;Nt:=50;h:=T0/Nt;

> Tx:=array(0..Nt):U:=array(0..Nt):U_map:=array(0..Nt);

> for j from 0 to Nt do

x:=j*h;z:=fU(x);Tx[j]:=x;U[j]:=z;U_map[j]:=z;

#print(x,z);

od:

> RisU:=zip(pp,Tx,U):

> RU:=plot(RisU):

> display(RU):;

> #====================================

> RisU:=zip(pp,Tx,U):

> whattype([RisU]);

> RU0:=plot(RisU,style=point,symbol=cross):

> display(RU0):;

Определение периода с помощью функции автокорреляции

> R:=proc(Nt,T::array,U::array)

local k,j,t,z,Af::array,Uf::array,RAf,RisAf;

Af:=array(0..Nt);Uf:=array(0..2*Nt);

for j from 0 to Nt do Uf[j]:=U[j];Uf[j+Nt]:=U[j];

end;

for j from 0 to Nt do

t:=0;

for k from 0 to Nt do

t:=t+evalf(Uf[k]*Uf[k+j]);

end;

Af[j]:=evalf(t/Nt);

end;

RAf:=zip(pp,T,Af);RisAf:=plot(RAf):

display(RisAf);

end:

> R(Nt,Tx,U);

>

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++=

>

> fn:=`E:\\work\\Саляхутдинов.txt`;

>

>

++++++++++++++++++++++++++++++++++++++++++++++++++++

> L:=readdata(fn,2):;

Nstrok:=vectdim(L);

> U_n:=array(1..Nstrok);:

T_n:=array(1..Nstrok);

> for j from 1 to Nstrok do

T_n[j]:=L[j,1];

U_n[j]:=L[j,2];

#print(j,T_n[j],U_n[j]);

od:

> u1:=zip(pp,T_n,U_n):

> RU1:=plot(u1,style=point,symbol=cross,color=black):

> display(RU,RU1);

>

> #printf("%s",`  №      t      U_map    U_pas     разн \n`);

for k from 0 to Nt do t:=Tx[k]:del:=U_map[k]-U_n[k+1];

#printf("% 3.0f  % 6.2f % 8.4f  % 8.4f % 8.4f \n",k,t,U_map[k],U_n[k+1],del):

end:;

                                    

unit final;

interface

uses

 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

 Dialogs, Menus, StdCtrls;

type

 TForm1 = class(TForm)

   MainMenu1: TMainMenu;

   N1: TMenuItem;

   N2: TMenuItem;

   N3: TMenuItem;

   SaveDialog1: TSaveDialog;

   Label1: TLabel;

   Label2: TLabel;

   ListBox1: TListBox;

   N4: TMenuItem;

   N5: TMenuItem;

   N6: TMenuItem;

   Label3: TLabel;

   Label4: TLabel;

   procedure N3Click(Sender: TObject);

   procedure N2Click(Sender: TObject);

   procedure N5Click(Sender: TObject);

   procedure N6Click(Sender: TObject);

 private

   { Private declarations }

 public

   { Public declarations }

 end;

var

 Form1: TForm1;

implementation

{$R *.dfm}

           {=====================================================}

const

  U0=0.15;

  nzac=4;

  koc=0.2;

  hintegr=0.1;

  Npoint=50;

var

      tau:real; {период сигнала}

      Koeff:real; {равен периоду}

      min,sec:byte;

      frez:string;

      ftxt:text;

{===================корень полинома==============}

{фунция, задающая вычисление полинома в точке}

function polynom(t:real):real;

begin

  polynom:=sqr(sqr(t))-sqr(t)*t-2;

end;

{процедуры метода простой итерации}

function derive(x:real):real;

begin

 derive:=sqr(x)*x*4-sqr(x)*3;

end;

procedure Iter(a,b:real;var root:real;var K:integer);

const

 eps=0.0000001;{погрешность определения корня}

 Q0=1.5; {нормирующий множитель для ламбда}

var

 lambda:real;

 g:real;

 x,x0:real;

begin

  g:=derive(b);

   form1.label2.caption:='max производной =  '+ floattostrF (g, ffGeneral, 5, 1);

   lambda:=1.99/g;

   x:=(a+b)/2;

   k:=0;

   repeat

     x0:=x;

     x:=x0-lambda*polynom(x0);

     form1. listbox1.Items.Add(floattostrF(x,ffGeneral, 12, 9));

     k:=k+1;

   until abs(x-x0)<eps;

   root:=x;

end;

function signal(t:real):real;{сигнал 11-го варианта}

var

 z:real;

begin

  if t<0 then

    z:=0

    else

    if t<1/2 then

      z:=cos(Pi*t)

      else

        if t<=1 then

          z:=0

                     else

    z:=0;

signal:=z;

end;

function Period(x,T:real):real;

 var

   z:real;

begin

  z:=x-trunc(x/T)*T;{выделение дробной части}

  Period:=signal(z);

end;

{====================правая часть диф. уравнения===}

function F(t,U:real):real;

begin

 F:=Nzac*  (cos((4+nzac/10)*t+U)+Koeff*Period(t,Koeff)-Koc*U);

end;

procedure difur;

var

 j:integer;

 U,t:real;

 U1:real;

 strU,strt:string;

begin

 form1.listbox1.Clear;

  U:=U0;

  t:=0;

  Koeff:=Tau;

  for j :=0 to Npoint+1 do

  begin

         strt:=floattostrF(t,ffGeneral, 7, 4);

    strU:=floattostrF(U,ffGeneral, 7, 4);

    form1. listbox1.Items.Add(strt+'   '+ stru);

    writeln(ftxt,t:8:2,' ',U:8:3);

    {Метод Эйлера}

         U1:=U+hintegr*F(t,U);

         U:=U1;

         t:=t+hintegr;

  end;

end;

procedure TForm1.N2Click(Sender: TObject);

begin

if savedialog1.Execute then

  begin

    frez:=savedialog1.FileName;

    label1.caption:='эапись в файл '+#10+frez;

  end;

  assignfile(ftxt,frez);

   rewrite(ftxt);

end;

procedure TForm1.N3Click(Sender: TObject);

begin

Form1.Close;

Closefile(ftxt);

end;

procedure TForm1.N5Click(Sender: TObject);

var

a,b:real;

kiter:integer;

begin

   Form1.Caption:='Вычисляем корень полинома';

    b:=3;

    a:=0;

   {здесь вызов алгоритма вычисления корня уравнения}

   Iter(a,b,Tau,Kiter);{вызов процедуры метода итераций}

   Label3.Caption:='корень равен '+floattostr(Tau);

   Label4.Caption:='число итераций '+inttostr(Kiter);

end;

procedure TForm1.N6Click(Sender: TObject);

begin

difur;

end;

end.


 

А также другие работы, которые могут Вас заинтересовать

25146. Р. Дж. Колінгвуд Ідея історії 29 KB
  Колінгвуд Ідея історії Ідея Історії€ безперечно найвідоміша книга Колінгвуда. Колінгвуд вважає що 4 тисячі років тому попередники нашої цивілізації не володіли тим що ми називаємо ідеєю історії. Можна виокремити 4 основні характеристики історії критерії історичної свідомості історичності як такої за Колінгвудом: 1. науковий характер історії.
25147. Поняття та ідеї як форми мислення 27.5 KB
  Копніна при визначенні логіки наукового дослідження проведено визначення поняття та ідей як форм наукового дослідження. Поняття характеризується як структурно складене утворення основу якого складають предмет думки та ознаки що його приписуються. Складеність поняття виявляє можливість відокремлення ознак від одного предмету та встановлення їх відношення до іншого предмету. Оперування поняттями дозволяє через визначення ознак формувати уявлення про ідеальний предмет як носій даних ознак.
25148. Лінійні і циклічні моделі історії 27.5 KB
  Лінійні і циклічні моделі історії Будьяке дослідження історії передбачає вирішення проблем природи історичного процесу його структури рушійних сил напрямку розвитку. Спроби осмислення послідовності наступності конкретних історичних періодів дозволили створити деякі узагальнені структуровані цілісні образи історії. Лінійні моделі це образ історії як незворотньої послідовності подій; геометричним аналогом цієї моделі спрямованості історії є пряма. Найчастіше зустрічається прогресивна лінійна модель історії згідно з якою поступ прогрес...
25149. Аналітична філософія 23 KB
  У широкому сукупність напрямків що характеризуються підвищеною увагою до мови а саме застосуванням методів логічного та лінгвістичного аналізу мови для вирішення філософських проблем. Головні завдання: дослідження мови з метою виявлення структури думки досягнення прозорого співвідношення мови та реальності чітке розмежування значимих та пустих висловлювань осмислених та беззмістовних фраз тощо. Рассел зосередився на аналітичних можливостіх символічної логіки і дослідженню основ математикию Мур же займався аналізом філософських понять...
25150. Поняття проблеми в сучасній методології науки 29.5 KB
  Поняття проблеми в сучасній методології науки Чуйко В. Саме ситуація проблеми є умовою та джерелом самого пізнання оскільки саме пізнання провокується незнанням. Гносеологічне значення поняття проблеми в науці полягає в тому що через неї розгортається висхідне фундаментальне протиріччя процесу пізнання: протиставлення наявного вже досягнутого рівня пізнання і нового.
25151. Поняття трансцедентальної філософії у Канта 28.5 KB
  Виокремлює три здатності людської душі яким відповідають три його критики здатність пізнання критика чистого розуму здатність бажання критика практичного розуму здатність до почуття задоволення і незадоволення критика здатності до судження. В пізнанні не наше уявлення узгоджується з предметом а предмет узгоджується з нашим уявленням тобто людина сама конструює предмет свого пізнання. Трансцедентальне всяке пізнання яке займається не стільки предметами скільки видами нашего пізнання предметів оскільки це пізнання є можливим...
25152. Проблема інтерсуб’єктивності в сучасній філософії 27 KB
  Проблема інтерсубєктивності в сучасній філософії Інтерсубєктивність умова взаємодії та передачі знання; значимість пізнавального досвіду однієї людини для іншої. Інтерсубєктивність як спільний досвід.
25153. Структуралістська парадигма в сучасному пізнанні 29 KB
  уявлення про позасвідомий характер структури Струкутра інваріантно статичне ціле утворене взаємозвязком його елементів таким чином що кожний залежить від інших і може зявитися лише завдяки відношенням з іншими елементами. Для структури характерним є кінцева кількість складових і правил їх комбінування які піддатні систематизації і інвентаризації. Дихотомія структури і твору: структура мова знаходиться в конфлікті з твором мовленням який є продуктом індивідуального акту волі і розуму. Примат структури над елементами людина лише...
25154. Вірогідне та достовірне знання 28.5 KB
  В науковому пізнанні поняття достовірне знання виконує дві основні функції: оціночну та методологічну. Оціночна функція поняття достовірність як показано в роботі Обєктивне знання К.Поппера полягає у визначенні відношення одного знання до іншого.