30041

Спектральный анализ дискретных сигналов

Курсовая

Информатика, кибернетика и программирование

Написать программу на языке программирования Паскаль для решения следующей задачи (вариант задания индивидуальный). Результаты расчетов должны выводиться на экран и в файл. Оформление графиков и таблиц выполнять средствами математических пакетов (Maple, MathCad)

Русский

2013-08-22

231 KB

22 чел.

Уральский технический институт связи и информатики (филиал)

Сибирского государственного университета

Телекоммуникаций и информатики

(УрТИСИ ГОУ ВПО «СибГУТИ»)

Курсовая работа.

По дисциплине

«Языки программирования».

Тема: Спектральный анализ дискретных сигналов

Выполнил: Саляхутдинов Р. Г.

Группа: МЕ-51

Екатеринбург, 2008

Задание для курсовой работы.

Написать программу на языке программирования Паскаль для решения следующей задачи (вариант задания индивидуальный). Результаты расчетов должны выводиться на экран и в файл. Оформление графиков и таблиц выполнять средствами математических пакетов (Maple, MathCad). Демонстрационный вариант программы подготовить в среде визуального программирования Delphi.

Проверить решение промежуточных задач средствами математических пакетов. Построить блок-схемы задачи и вспомогательных частей алгоритма. Оценить погрешность выполненных расчетов.

Напряжение U=U(t) на входе транзистора как функция времени описывается дифференциальным уравнением

с начальными условиями (1), где n – последняя цифра номера зачетной книжки, k – коэффициент усиления (см. ниже), fs(t) – периодический сигнал

(рис. 1), mкоэффициент  обратной связи.

Указания и пояснения.

  1.  Дифференциальное уравнение с заданными начальными условиями (задача Коши) решается методом Рунге-Кутта второго порядка с коррекцией (3) на отрезке [0;5] с шагом  h=0.01.(в узлах  tj =jh, j=0,1,2…). Функция fs(t) в правой части представляет собой регулирующий периодический (период Т) сигнал единичной амплитуды (рис 1, номер варианта  n – последняя цифра номера зачетной книжки,). Результаты расчетов—таблица (tj,Uj) и график функции U(t) (на экран и в файл).
  2.  Значение коэффициента усиления k в правой части дифференциального уравнения есть наименьший положительный корень полинома (2), который вычисляется одним из методов нахождения корней уравнения (метод касательных, метод простой итерации).
  3.  Построить спектральные характеристики периодического сигнала fs(t), заданного в аналоговой форме и в виде дискретного сигнала. Длительность сигнала равна 1, период T=k.
  4.   Период функции U(t) определить с помощью функции автокорреляции.

Курсовая работа выполняется в ЧЕТЫРЕ  этапа.

  1.  Средствами математического пакета Maple  решается задача спектрального анализа аналогового и дискретного периодического сигнала fs(t). Сравниваются спектры амплитуд аналогового и дискретного представлений сигнала. (образец выполнения задания – файл вариант11.mws).
    1.  Создается проект в визуальной среде Delphi, решающий эту же задачу для дискретного сигнала, а результаты выполнения сравниваются визуально.
      1.  С помощью языка программирования системы Maple решается задача интегрирования дифференциального уравнения (задача Коши) методом (по варианту задания). Окончательные вычисления в программе зависят от результатов расчета программы в Delphi (следующий пункт). Образец выполнения задания – файл RUTTA.mws.
        1.  Создается проект в визуальной среде Delphi, решающий ту же задачу Коши, результаты расчета которой записываются в файл,  который используется в предыдущем пункте. Выводятся графики результатов вычислений в Maple и Delphi и сравниваются между собой. Явные несовпадения свидетельствуют об ошибке в программе на  Delphi.

Оформление:

  •  Формат А4.
  •  Титул
  •  Постановка задачи
  •  Алгоритмы решения вспомогательных задач
  •  Блок-схемы
  •  Результаты расчетов, графики
  •  Литература

Индивидуальное задание № 18

  1.  Начальные условия: U(0)=0.15
  2.  полином:x^4-x^3-2
  3.  коррекция:по средней производной
  4.   метод:итерации 


Часть 1.

> restart;

> with(linalg):with(plots):with(plottools):

> fun:= proc(t) local z ;z:=piecewise(t<0,0,t<1/2,cos(Pi*t),t<=1,0,0); evalf(z);end;

> fun(t/tau);

> p(x):=x^4-x^3-2;

> Koeff:=fsolve(p(x)=0,x,0..3);

> tau:=Koeff:

> plot(p(x),x=Koeff-0.5..Koeff+0.5,thickness=2,color=black);

> R1:=plot(fun(t),t=0..2.5,thickness=2,linestyle=3,color=blue):

> R11:=plot(fun(t/tau),t=0..2.5,thickness=2,color=black):

> display(R1,R11);

> Fourier_T:=proc(F,T0,TN,k::evaln) local T;

 global A0,Ak,Bk;

   T:=TN-T0;

  A0:=2/T*Int(F(x),x=T0..TN);

  Ak:=2/T*int(F(x)*cos(k*x*2*Pi/T),x=T0..TN):

  Bk:=2/T*int(F(x)*sin(k*x*2*Pi/T),x=T0..TN):

end proc:

> Trig_polynom:=proc(N,T,a0,ak,bk,k::evaln) local n,Pol,A0,A,B;

 global a,b,RisTrig;

 a:=array(0..N);b:=array(0..N);

   A0:=evalf(a0);a[0]:=A0;b[0]:=0;

   A:=seq(evalf(subs(k=n,ak)),n=1..N);

   B:=seq(evalf(subs(k=n,bk)),n=1..N);

    for n from 1 to N do

     a[n]:=A[n];b[n]:=B[n];

    end do;

   Pol:=A0/2+sum(A[k]*cos(2*Pi*k*x/T)+B[k]*sin(2*Pi*k*x/T),k=1..N):

   RisTrig:=plot(Pol,x=-T/2..3*T/2,color=blue,thickness=2):

 RETURN(Pol);

end proc:

> ARR:=proc(n::integer,c) local L,H,ma,mi,k::integer,

  Sim::array(0..n);

  ma:=c[0];mi:=c[0];

  L:=line([0,c[0]],[n,c[n]],thickness=2,color=red);

 for k from 1 to n do

  if c[k]>ma then ma:=c[k];end if;

  if c[k]<mi then mi:=c[k];end if;

 end do;

 H:=ma-mi;

 if H=0 then RETURN(L) end;

 for k from 0 to n do

  if abs(c[k])<H/1000 then

    Sim[k]:=ellipse([k,c[k]],0.2,0.01*H,color=blue);

  else

   Sim[k]:=plottools[arrow]([k,0],[k,c[k]],0.2,0.2,0,color=black);

  end if;

 end do;

 convert(Sim,list);

end:

> Spectr:=proc(n,a,b,c,Risphi) local k,R,phi;

  for k  from 0 to n do

    c[k]:=evalf(abs(I*a[k]+b[k])):

#    print(k,c[k]);

    phi:=evalf(argument(I*a[k]+b[k]));

    R[k]:=[eval(k),eval(phi)];

  end:;

Risphi:=plot(convert(R,list)):

end:

 

> T:=3;# величина периода

> F_for_all:=proc(t) global tau;fun(t/tau);end proc:;

> Ris1:=plot(F_for_all(t),t=0..T,color=brown,thickness=2,discont=true):display(Ris1);

> Fourier_T(F_for_all,0,T,k):

> a0:=evalf(A0);

> Nk:=40;

> Trig_polynom(Nk,T,A0,Ak,Bk,k):

> display(RisTrig,Ris1);

> Spectr(Nk,a,b,c,'Risphi1');

> display(ARR(Nk,c));

>

> Ampl:=display(ARR(Nk,c)):;

> 2: DTF:=proc (y,N,Y) local n,k,j,p,h;

n:=N-1;

h:=2*Pi/N;

2.1: for k from 0 to N do

p:=0;

  for j from 0 to n do

    p:=p+evalf(y[j]*exp(-I*k*j*h));

  end;

 Y[k]:=evalf(1/N*p);

end:

end:;

> 3: CDTF:=proc(N,Y,y) local n,k,h,p,j;

n:=N-1;

 h:=2*Pi/N;

for k from 0 to n do

p:=0;

  for j from 0 to n do

    p:=p+Y[j]*exp(I*k*j*h);

  end;

 y[k]:=evalf(Re(p));

end:

end:

> Setka_DTF:=proc(Nt,T,F,Y::array) local h,j,x,R,RL;  

  global GrafF;

  h:=T/Nt;

 for j from 0 to Nt do

  x:= evalf(j*h);

  Y[j]:= F(x);

  R[j]:=[j,eval(Y[j])];

 end:

   5.1: R[Nt]:=[j,eval(Y[0])];

    GrafF:=plot(convert(R,list),0..Nt-1,color=brown,

    style=point,symbol=circle):

end:

> Spectr_DTF:=proc(n,C,A,phi) local k,R;global Risphi;

 6.1:  for k  from 0 to n do

    A[k]:=evalf(abs(C[k])):

    phi[k]:=evalf(argument(C[k]));

    R[k]:=[eval(k),eval(phi[k])];

end:;

Risphi:=plot(convert(R,list),thickness=2,color=blue,style=point,symbol=box):

end:

Параметры задачи

> Nt:=33:`число дискретных отсчетов `:

> n:=Nt;N:=Nt-1;# параметры ДПФ

> C:=array(0..n):phi:=array(0..n):A:=array(0..n):;

Y:=array(0..N):

> Setka_DTF(N,T,F_for_all,Y);

> DTF(Y,Nt,C,n):

> Spectr_DTF(n,C,A,phi):

Для четных N

> display(ARR(n,A));

> display(ARR((n-1)/2,A));

> CDTF(Nt,C,F):

> display(GrafF,ARR(n-1,F));

> Setka:=proc(Nt,T,F,Y::array) local h,j,x,R,RL;  

  global GrafF;

  h:=T/Nt;

 for j from 0 to Nt do

  x:= evalf(j*h);

  Y[j]:= F(x);

  R[j]:=[x,eval(Y[j])];

 end:

   5.1: R[Nt]:=[x,eval(Y[0])];

    GrafF:=plot(convert(R,list),0..T,color=brown,

    style=point,symbol=circle):

end:

> F_Discret:=proc (Y,N,a,b,n) local k,j,p,q,h;

 h:=2*Pi/N;

for k from 0 to n do

p:=0;q:=0;

  for j from 0 to N do

    p:=p+evalf(Y[j]*cos(k*j*h));

    q:=q+evalf(Y[j]*sin(k*j*h));

  end;

 a[k]:=2/N*p;b[k]:=2/N*q;

# print(k,a[k],b[k]);

end:

if 2*n=N then b[n]:=0; end;

RETURN(n);

end:;

> 3: Trig:=proc(t,n,T,a,b) local z,k;

z:=a[0]/2+sum(a[k]*cos(k*t*2*Pi/T)+b[k]*sin(k*t*2*Pi/T),k=1..n);

end:

> M:=Nk:

> a:=array(0..M):b:=array(0..M):c:=array(0..M);

> Setka(N,T,F_for_all,Y):

> F_Discret(Y,N,a,b,M):

> Cl:=blue,red,brown:;

> 15: RT:=seq(plot(Trig(t,8*k,T,a,b),t=-0.1..T+0.1,

numpoints=500,color=Cl[k]),k=1..3):

> 16: display(RT,GrafF);

> Spectr(M,a,b,c,'Grafphi');:

> display(ARR(M,c));:

> display(Ampl);

                                            

                                            

                                            

unit koren1;

interface

uses

 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

 Dialogs, StdCtrls, ExtCtrls;

type

 TForm1 = class(TForm)

   Button1: TButton;

   Label1: TLabel;

   Button2: TButton;

   Label2: TLabel;

   Button3: TButton;

   ListBox1: TListBox;

   Button4: TButton;

   Button5: TButton;

   Image1: TImage;

   procedure Button1Click(Sender: TObject);

   procedure Button2Click(Sender: TObject);

   procedure Button3Click(Sender: TObject);

   procedure Button4Click(Sender: TObject);

   procedure FormCreate(Sender: TObject);

   procedure Button5Click(Sender: TObject);

 private

   { Private declarations }

 public

   { Public declarations }

 end;

var

 Form1: TForm1;

implementation

{$R *.dfm}

{============================}

const

N=30;

m=N div 2;

 x0=0;

T=3;

hx=T/N;

type

koeff=array[0..m] of real;

dann=array[0..N] of real;

var

Tau:real;

Y:dann;

a,b:koeff;

h:real;

eps:real;

La:real;

Rb:real;

Nkoeff:integer;

function pol(t:real):real;

begin

 pol:=sqr(sqr(t))-sqr(t)*t-2;

end;

function derive(t:real):real;

begin

 derive:=sqr(t)*t*4-sqr(t)*3;

end;

function root(a,b:real):real;

var

X0,X1,delta:real;

begin

X0:=(a+b)/2;

repeat

  X1:=X0-pol(X0)/derive(X0);

  delta:=abs(X1-X0);

  X0:=X1;

until    delta<0.00001;

root:=X0;

end;

function riter(a,b:real):real;

var

X0,X1,delta:real;

const

lambda=0.0001;

begin

X0:=(a+b)/2;

repeat

  X1:=X0-pol(X0)*lambda;

  delta:=abs(X1-X0);

  X0:=X1;

until    delta<0.00001;

riter:=X0;

end;

function signal(t:real):real;

var

z:real;

begin  

  if t<0 then

  z:=0

  else

  if t<=1/2 then

  z:=cos(Pi*t)

  else

  if t<=1 then

  z:=0

  else z:=0;

  signal:=z;

   end;

   procedure Trig(m,N:integer;Y:dann;var a,b:koeff);

   var

   j,k:integer;

   p,q:real;

   x:real;

   h:real;

   begin

     h:=2*Pi/N;

     for k := 0 to m do

       begin

         p:=0;q:=0;

         for j := 1 to N do

           begin

             x:=j*h;

             p:=p+Y[j]*cos(x*k);

             q:=p+Y[j]*sin(x*k);

           end;

           a[k]:=p*2/N;

           b[k]:=q*2/N;

       end;

   end;

    function Tpol(m:integer;x:real):real;

var

z:real;

k:integer;

begin

 z:=a[0]/2;

  for k:=1 to m do

   z:=z+(a[k]*cos(k*2*Pi/T*x)+b[k]*sin(k*2*Pi/T*x));

  Tpol:=z;

end;

   procedure grafik(numvar:integer);

type

  dann= array[0..N] of real;

var

  L,R,W,H: integer;

  X: dann;

  Y: dann;

  k:integer;

  ymin,ymax:real;

  Mx,My:real;

  x0,y0: integer;

  posx,posy:integer;

  Nkf:string;

  tx:real;

  ypol:real;

  procedure min_max(N:integer;Y:dann; var min, max:real);

  var

    k: integer;

  begin

     min:=Y[0];max:=Y[0];

     for k := 1 to N do

     if Y[k]> max then

        max:=Y[k]

       else if Y[k]< min then

        min:=Y[k];

     {увеличим диапазон}

      max:=max+0.1;

      min:=min-0.1;

  end;

begin

  L:=20;

  R:=form1.image1.clientHeight-20;

  W:=form1.image1.Width-50;

  H:=form1.image1.clientheight-50;

  case numvar of

1: begin

     for  k:=0 to N do

       X[k]:=signal(hx*k/Tau);

     min_max(N,X,ymin,ymax);

     Mx:=W/N;

     My:=H/(ymax-ymin);

     x0:=L;

     y0:=R-abs(Round(ymin*My));

     with form1.image1.Canvas do

     begin

       pen.Color:=clblue;

       font.Name:='Tahoma';

       font.Size:=8;

       font.Color:=claqua;

       for k:=0 to N do

        begin

          posx:=x0+round(k*Mx);

          posy:=y0-round(X[k]*My);

          textout(posx-2,posy-8,'o');

          Pixels[posx,posy]:=clRed;

        end;

       pen.Width:=2;

       Moveto(L,R);lineto(L,R-H);

       moveto(x0,y0);lineto(x0+W,y0);

       font.Color:=clred;

       textout(x0+W,y0+10,'x');

       textout(x0+W,y0-20,floattostrF(T,ffFixed,3,0));

       textout(x0+round(W*Tau/T), y0-20,'tau='+ floattostrF (Tau,ffFixed, 6, 3));

       Nkf:=Inputbox('Число коэффициентов полинома','например 10','20');

       Nkoeff:=strtoint(Nkf);

       pen.Color:=clNavy;

       tx:=0;

       ypol:=Tpol(Nkoeff,tx/Tau);

        posx:=x0+round(0*Mx/2);

        posy:=y0-round(ypol*My);

       moveto(posx,posy);

       for k:=1 to 2*N do

       begin

         tx:=hx*k/2;

         ypol:=Tpol(Nkoeff,tx/Tau);

         posx:=x0+round(k*Mx/2);

         posy:=y0-round(ypol*My);

         lineto(posx,posy);

       end;

     end;

   end;

  2: begin

       for  k:=0 to m do

        Y[k]:=sqrt(sqr(a[k])+sqr(b[k]));

        min_max(m,Y,ymin,ymax);

        Mx:=W/m;

        My:=H/(ymax-ymin);

        x0:=L;

        y0:=R-abs(Round(ymin*My));

     with form1.image1.Canvas do

     begin

        pen.Width:=2;

        pen.Color:=clred;

        Moveto(L,R);lineto(L,R-H);

        moveto(x0,y0);lineto(x0+W,y0);

        pen.Width:=5;

        pen.Color:=clblue;

       for  k:=0 to m do

        begin

         posx:=x0+round(k*Mx);

         posy:=y0-round(Y[k]*My);

         moveto(posx,y0);

         lineto(posx,posy);

        end;

     end;

     end;

  end;

end;

{===============================}

procedure TForm1.Button1Click(Sender: TObject);

const

a=0; b=3;

begin

Tau:=root(a,b);

Label1.Caption:='корень='+floattostr(Tau);

end;

procedure TForm1.Button2Click(Sender: TObject);

const

a=0; b=3;

begin

Tau:=riter(a,b);

Label2.Caption:='корень='+floattostr(Tau);

Button2.Visible:=false;

Button3.Visible:=true;

Button3.SetFocus;

Button4.Visible:=false;

end;

procedure TForm1.Button3Click(Sender: TObject);

var

 j: Integer;

 s1,s2,s3:string;

 begin

for j := 0 to N do

Y[j]:=signal(x0+j*hx);

Y[N]:=(Y[0]+Y[N])/2;

Trig(m,N,Y,a,b);

for j := 0 to m do

 begin

   str(j:2,s1);

   str(a[j]:10:5,s2);

   str(b[j]:10:5,s3);

   listbox1.Items.Add(s1+s2+s3);

   end;

   label1.Caption:='Вычислены коэффициенты Фурье';

 Button3.Visible:=false;

 Button4.Visible:=true;

 Button4.SetFocus;

   end;

procedure TForm1.Button4Click(Sender: TObject);

begin

Form1.Caption:='Построение графиков';

   {здесь поместим алгоритм построения графика сигнала и триг. полинома}

   Label1.Caption:='графики сигнала и полинома';

   Button4.Visible:=false;

   Button5.Visible:=true;

   Button5.SetFocus;

   Label2.Visible:=false;

   {Label3.Visible:=false;

   Label4.Visible:=false;}

  listbox1.Visible:=false;

   grafik(1); { 1 - сигнал точками, полином - линией}

Label1.Caption:='графики сигнала и полинома';

Button4.Visible:=false

end;

procedure TForm1.Button5Click(Sender: TObject);

begin

Form1.Caption:='Спектр амплитуд';

   {здесь поместим алгоритм построения спектра амплитуд}

       Label1.Caption:='График спектра амплитуд';

   Button5.Visible:=false;

     form1.image1.Canvas.FillRect(rect(0,0,clientwidth,clientheight));

     grafik(2);

end;

procedure TForm1.FormCreate(Sender: TObject);

begin

Button2.Visible:=true;

Button3.Visible:=false;

Button4.Visible:=false;

Button5.Visible:=false;

end;

end.

Часть 2.

> restart;

> with(linalg):with(plots):

pp:=(x,y)->[x,y];

> fun:= proc(t) local z ;z:=piecewise(t<0,0,t<1/2,cos(Pi*t),t<=1,0,0); evalf(z);end;

> plot(fun(t),t=-1..2,thickness=2,color=brown);

> p(x):=x^4-x^3-2;

> Koeff:=fsolve(p(x),x,0..2);

> T:=Koeff;

> tau:=1;

> Period:=proc(t,t0,tau,T,f) local x,z;

x:=evalf(t-t0-floor((t-t0)/T)*T);

z:=fun(x/tau);evalf(z);

end;

> plot(Period(x,0,tau,T,fun),x=-1..3,thickness=2,color=brown):;

> #==============================================================================

>

> Koc:=0.2;Nzac:=4;

> ur:=diff(U(t),t);

> F:=Nzac*(cos((4+Nzac/10)*t+U(t))+Koeff*Period(t,0,tau,T,f)-Koc*U(t));

> RK:=dsolve({ur=F,U(0)=0.15},U(t),type=numeric,output=listprocedure);

> fU:=subs(RK,U(t));

> T0:=5;Nt:=50;h:=T0/Nt;

> Tx:=array(0..Nt):U:=array(0..Nt):U_map:=array(0..Nt);

> for j from 0 to Nt do

x:=j*h;z:=fU(x);Tx[j]:=x;U[j]:=z;U_map[j]:=z;

#print(x,z);

od:

> RisU:=zip(pp,Tx,U):

> RU:=plot(RisU):

> display(RU):;

> #====================================

> RisU:=zip(pp,Tx,U):

> whattype([RisU]);

> RU0:=plot(RisU,style=point,symbol=cross):

> display(RU0):;

Определение периода с помощью функции автокорреляции

> R:=proc(Nt,T::array,U::array)

local k,j,t,z,Af::array,Uf::array,RAf,RisAf;

Af:=array(0..Nt);Uf:=array(0..2*Nt);

for j from 0 to Nt do Uf[j]:=U[j];Uf[j+Nt]:=U[j];

end;

for j from 0 to Nt do

t:=0;

for k from 0 to Nt do

t:=t+evalf(Uf[k]*Uf[k+j]);

end;

Af[j]:=evalf(t/Nt);

end;

RAf:=zip(pp,T,Af);RisAf:=plot(RAf):

display(RisAf);

end:

> R(Nt,Tx,U);

>

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++=

>

> fn:=`E:\\work\\Саляхутдинов.txt`;

>

>

++++++++++++++++++++++++++++++++++++++++++++++++++++

> L:=readdata(fn,2):;

Nstrok:=vectdim(L);

> U_n:=array(1..Nstrok);:

T_n:=array(1..Nstrok);

> for j from 1 to Nstrok do

T_n[j]:=L[j,1];

U_n[j]:=L[j,2];

#print(j,T_n[j],U_n[j]);

od:

> u1:=zip(pp,T_n,U_n):

> RU1:=plot(u1,style=point,symbol=cross,color=black):

> display(RU,RU1);

>

> #printf("%s",`  №      t      U_map    U_pas     разн \n`);

for k from 0 to Nt do t:=Tx[k]:del:=U_map[k]-U_n[k+1];

#printf("% 3.0f  % 6.2f % 8.4f  % 8.4f % 8.4f \n",k,t,U_map[k],U_n[k+1],del):

end:;

                                    

unit final;

interface

uses

 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

 Dialogs, Menus, StdCtrls;

type

 TForm1 = class(TForm)

   MainMenu1: TMainMenu;

   N1: TMenuItem;

   N2: TMenuItem;

   N3: TMenuItem;

   SaveDialog1: TSaveDialog;

   Label1: TLabel;

   Label2: TLabel;

   ListBox1: TListBox;

   N4: TMenuItem;

   N5: TMenuItem;

   N6: TMenuItem;

   Label3: TLabel;

   Label4: TLabel;

   procedure N3Click(Sender: TObject);

   procedure N2Click(Sender: TObject);

   procedure N5Click(Sender: TObject);

   procedure N6Click(Sender: TObject);

 private

   { Private declarations }

 public

   { Public declarations }

 end;

var

 Form1: TForm1;

implementation

{$R *.dfm}

           {=====================================================}

const

  U0=0.15;

  nzac=4;

  koc=0.2;

  hintegr=0.1;

  Npoint=50;

var

      tau:real; {период сигнала}

      Koeff:real; {равен периоду}

      min,sec:byte;

      frez:string;

      ftxt:text;

{===================корень полинома==============}

{фунция, задающая вычисление полинома в точке}

function polynom(t:real):real;

begin

  polynom:=sqr(sqr(t))-sqr(t)*t-2;

end;

{процедуры метода простой итерации}

function derive(x:real):real;

begin

 derive:=sqr(x)*x*4-sqr(x)*3;

end;

procedure Iter(a,b:real;var root:real;var K:integer);

const

 eps=0.0000001;{погрешность определения корня}

 Q0=1.5; {нормирующий множитель для ламбда}

var

 lambda:real;

 g:real;

 x,x0:real;

begin

  g:=derive(b);

   form1.label2.caption:='max производной =  '+ floattostrF (g, ffGeneral, 5, 1);

   lambda:=1.99/g;

   x:=(a+b)/2;

   k:=0;

   repeat

     x0:=x;

     x:=x0-lambda*polynom(x0);

     form1. listbox1.Items.Add(floattostrF(x,ffGeneral, 12, 9));

     k:=k+1;

   until abs(x-x0)<eps;

   root:=x;

end;

function signal(t:real):real;{сигнал 11-го варианта}

var

 z:real;

begin

  if t<0 then

    z:=0

    else

    if t<1/2 then

      z:=cos(Pi*t)

      else

        if t<=1 then

          z:=0

                     else

    z:=0;

signal:=z;

end;

function Period(x,T:real):real;

 var

   z:real;

begin

  z:=x-trunc(x/T)*T;{выделение дробной части}

  Period:=signal(z);

end;

{====================правая часть диф. уравнения===}

function F(t,U:real):real;

begin

 F:=Nzac*  (cos((4+nzac/10)*t+U)+Koeff*Period(t,Koeff)-Koc*U);

end;

procedure difur;

var

 j:integer;

 U,t:real;

 U1:real;

 strU,strt:string;

begin

 form1.listbox1.Clear;

  U:=U0;

  t:=0;

  Koeff:=Tau;

  for j :=0 to Npoint+1 do

  begin

         strt:=floattostrF(t,ffGeneral, 7, 4);

    strU:=floattostrF(U,ffGeneral, 7, 4);

    form1. listbox1.Items.Add(strt+'   '+ stru);

    writeln(ftxt,t:8:2,' ',U:8:3);

    {Метод Эйлера}

         U1:=U+hintegr*F(t,U);

         U:=U1;

         t:=t+hintegr;

  end;

end;

procedure TForm1.N2Click(Sender: TObject);

begin

if savedialog1.Execute then

  begin

    frez:=savedialog1.FileName;

    label1.caption:='эапись в файл '+#10+frez;

  end;

  assignfile(ftxt,frez);

   rewrite(ftxt);

end;

procedure TForm1.N3Click(Sender: TObject);

begin

Form1.Close;

Closefile(ftxt);

end;

procedure TForm1.N5Click(Sender: TObject);

var

a,b:real;

kiter:integer;

begin

   Form1.Caption:='Вычисляем корень полинома';

    b:=3;

    a:=0;

   {здесь вызов алгоритма вычисления корня уравнения}

   Iter(a,b,Tau,Kiter);{вызов процедуры метода итераций}

   Label3.Caption:='корень равен '+floattostr(Tau);

   Label4.Caption:='число итераций '+inttostr(Kiter);

end;

procedure TForm1.N6Click(Sender: TObject);

begin

difur;

end;

end.


 

А также другие работы, которые могут Вас заинтересовать

75611. РАЗЛОЖЕНИЕ ФУНКЦИЙ В КОМПЛЕКСНЫЙ РЯД ФУРЬЕ 60.5 KB
  Это и есть разложение в комплексный ряд Фурье. Коэффициенты Сk называются комплексными коэффициентами Фурье и, подобно действительным коэффициентам Фурье, вычисляются как скалярные произведения
75612. КЛЮЧЕВЫЕ ОПЕРАЦИИ ЦОС 191 KB
  Применяется для вычисления выходного сигнала yt линейной системы по заданному входному xt и известному импульсному отклику ht рис. Линейными называются системы для которых справедлив принцип суперпозиции отклик на сумму входных сигналов равен сумме откликов на эти сигналы по отдельности и принцип однородности изменение амплитуды входного сигнала вызывает пропорциональное изменение амплитуды выходного сигнала. Для реальных систем объектов свойство линейности может выполняться приближенно В системах цифровой обработки...
75613. ПРОГРАММИРОВАНИЕ КЛЮЧЕВЫХ ОПЕРАЦИЙ ЦОС В MATLAB 51.5 KB
  Основные арифметические операции в MATLAB: сложение, вычитание, умножение , деление и возведение в степень. Операции умножения, деления и возведения в степень рассчитаны на работу с матрицами, поэтому при поэлементных операциях они записываются
75614. Цифровая фильтрация 152 KB
  согласованные фильтры; фильтры для борьбы с шумами при нелинейных и нестационарных процессах фильтр ГильбертаХуанга Выбор способа борьбы с шумами должен производится с учетом свойств и особенностей информативного сигнала и помехи. Чем в большей степени свойства сигнала и шума априори известны тем может быть получен больший эффект от цифровой обработки. Кроме того несмотря на обилие стандартных доведенных до уровня готовых программ цифровой обработки с учетом конкретных априори известных свойствах информативного сигнала и шума может...
75615. ОПТИМАЛЬНАЯ И СОГЛАСОВАННАЯ ФИЛЬТРАЦИЯ 170.5 KB
  Оптимальная фильтрация Оптимальное выделение сигнала из шума можно проводить различными методами в зависимости от того какая задача ставится: обнаружение сигнала сохранение формы сигнала и т. В каждом методе оптимальной фильтрации вводится понятие критерия оптимальности согласно которому строится оптимальный алгоритм обработки сигнала. Оптимальный фильтр КолмогороваВинера Фильтры низкой частоты высокой частоты и полосовые фильтры эффективны в том случае когда частотные спектры сигнала и шума не...
75616. ПРИМЕНЕНИЕ ЦОС ДЛЯ ОБРАБОТКИ КОРОТКИХ СИГНАЛОВ. ОКОННАЯ ФИЛЬТРАЦИЯ 233.5 KB
  В том случае если анализируется одночастотный сигнал и он занимает все временное окно массив частотного спектра содержит только один ненулевой элемент номер которого равен количеству периодов сигнала во временном окне. Если же сигнал занимает не все временное окно а его часть то частотный спектр будет растекаться т. Для упрощения записи формулы приводятся в аналитической а не в дискретной форме с временным окном...
75617. ИЗУЧЕНИЕ ЗАКОНОМЕРНОСТЕЙ ФОРМИРОВАНИЯ НАНОЧАСТИЦ КОБАЛЬТА В СТРУКТУРЕ ПОЛИМЕРНЫХ МАТРИЦ НА ОСНОВЕ МОДИФИЦИРОВАННОГО ТЕТРАФТОРЭТИЛЕНА 7.57 MB
  Влияние концентрации исходного раствора хлорида кобальта при имплантации ионов кобальта в полимерную матрицу на основе политетрафторэтилена на размер получаемых наночастиц кобальта; влияние концентрации исходного раствора хлорида кобальта при имплантации ионов кобальта в полимерную матрицу на основе политетрафторэтилена на глубину проникновения наночастиц кобальта;
75618. ИЗМЕНЧИВОСТЬ МОРФОЛОГИЧЕСКИХ ПРИЗНАКОВ В ПРИРОДНЫХ ПОПУЛЯЦИЯХ СМОРОДИНЫ 291.5 KB
  Листья растений смородины Биберштейна значительно крупнее листьев смородины альпийской. У смородины Биберштейна среднее значение листа по признаку «длинна главной жилки» составляет – 5,2 см, а у смородины альпийской – 2,21 см.
75619. ИЗМЕНЕНИЕ БИОХИМИЧЕСКИХ ПОКАЗАТЕЛЕЙ ПРИ ВИРУСНЫХ ГЕПАТИТАХ 275.5 KB
  Клинические проявления хронического вирусного гепатита в типичных случаях выражены слабо, малоспецифичны и в следствие этого нередко остаются незамеченными. Наиболее главным симптомам является пожелтение кожи, то есть желтушное окрашивание кожи и склер, заметив которое, больные обычно и идут на прием к врачу.