30063

Визуализация численных методов. Решение задачи в MathCAD

Курсовая

Информатика, кибернетика и программирование

Дифференциальными называются уравнения, связывающие независимую переменную, искомую функцию и ее производные. Решением ДУ называется функция, которая при подстановке в уравнение обращает его в тождество. Лишь очень немногие из таких уравнений удается решить без помощи вычислительной техники. Поэтому численные методы решения ДУ играют важную роль в практике инженерных расчетов

Русский

2014-08-21

187.5 KB

5 чел.

СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ТЕЛЕКОММУИКАЦИЙ ИИНФОРМАТИКИ

Уральский технический институт связи и информатики Факультет телекоммуникаций

Кафедра физики, прикладной математики и информатики

Курсовая по информатике

на тему:

«Визуализация численных методов»

       Студент: Паньшин Артем Андреевич

               Группа:  ОЕ-71

      Преподаватель: Минина Елена Евгеньевна

 

г. Екатеринбург, 2008

Оглавление

Введение…………………………………………………………… 3

Постановка задачи ………………………………………………. 4

Описание используемых методов…………………………….. 5

Блок-схемы ……………………….……………………………….8

Виды форм проекта……………………………………………. 11

Листинг программы на языке Visual Basic…………………. 12

Решение задачи в MathCAD ……………………………..…... .14

Вывод……………………………………………………….…….. .15


Введение

Дифференциальными называются уравнения, связывающие независимую переменную, искомую функцию и ее производные. Решением ДУ называется функция, которая при подстановке в уравнение обращает его в тождество. Лишь очень немногие из таких уравнений удается решить без помощи вычислительной техники. Поэтому численные методы решения ДУ играют важную роль в практике инженерных расчетов. Дифференциальные уравнения - уравнения, связывающие между собой независимую  переменную , искомую функцию и ее производную.

Если решить сложно или невозможно, используют числовые методы, то есть приближенные значения. В числовых методах обязательно используют начальные условия, чтобы исключить константу.

Числовые методы позволяют построить интегральную кривую по точкам. В зависимости от того, сколько точек используется для расчета очередной точки интегральной кривой, все численные методы делятся на одношаговые и многошаговые. В нашем случае мы используем одношаговые численные методы.

Основные цели  работы:

Целью моей работы является изучение основ системы программирования Microsoft  Visual  Basic и приобретение начальных навыков разработки программного обеспечения для операционных систем  Windows.


Постановка задачи

Решить методами Эйлера и Эйлера модифицированного задачу Коши для дифференциального уравнения 1-го порядка 2*x*y*dx-(x+1)=0

на отрезке [0; 0.8] с шагом h=0.05 и начальным условием: Y(0) = 4. Общее решение: y=exp(2*x)*C/(x+1)^2

Ответ должен быть получен в виде таблицы результатов:

X

Y(1)

Y(2)

YT

X0

Y0(1)

Y0(2)

Y(X0)

X1

Y1(1)

Y1(2)

Y(X1)

Xk

Yk(1)

Yk(2)

Y(Xk)

Где: Y(1) - решение, полученное методом Эйлера, Y(2) – решение, полученное методом Эйлера модифицированного, YT – точное решение дифференциального уравнения.

Данные таблицы визуализировать на форме в виде графиков.

Перед вычислением последнего столбца таблицы результатов необходимо из начальных условий вычесть значение коэффициента c, используемого в общем решении.


Описание используемых методов

МЕТОД ЭЙЛЕРА

 Этот  метод  называют   методом  Рунге-Кутта  первого   порядка точности.

Данный метод одношаговый. Табулирование функции происходит поочередно в каждой точке. Для расчета значения функции в очередном узле необходимо использовать значение функции в одном предыдущем узле.

       Для решения поставленной задачи выполняем следующие действия:

  •  Строим оси координат;
  •  Отмечаем точку A(0; 4) – первую точку интегральной кривой;
  •   Ищем угол наклона касательной к графику в точке A:

  •  Строим касательную AB в точке А под углом α0;
  •  Находим х1 по формуле: xi = х0 + ih, где h – шаг интегрирования

x1 = 0 + 1 · 0.05 = 0.05;

  •  Проводим прямую x = x1 = 0.05  до пересечения с прямой AB, отмечаем точку B(x1; y1);
  •  Ищем  y1:

Из прямоугольного треугольника ABC ,

Δy = y1 y0,

 y1 y0= Δx· tg α0

Δx = x1 – x0 = h => y1 = y0 + h · (f(x0; y0)) = 4 + 0.05  f(0;4) = 4+0.05*0= 4

Следовательно, точка B имеет координаты (0.05; 4).

Следующую точку будем искать аналогичным способом по формуле расчета очередной точки интегральной функции:

(*)

Рис1. Решение задачи методом Эйлера.

Его существенный недостаток - большая погрешность вычислений.

МЕТОД ЭЙЛЕРА МОДИФИЦИРОВАННЫЙ

Для уменьшения погрешности вычислений часто используется модифицированный метод Эйлера. Этот метод имеет так же следующие названия: метод Эйлера-Коши или метод Рунге-Кутта второго порядка точности.

Для решения поставленной задачи выполняем следующие действия:

  •  Строим оси координат;
  •  Отмечаем А(0; 4) – первую точку интегральной кривой;
  •  Ищем угол наклона касательной к графику в точке A:

  •  Строим касательную AB в точке А под углом α0;
  •  Находим х1 по формуле: xi = х0 + ih, где h – шаг интегрирования

x1 = 0 + 0.05 · 1 = 0.05;

  •  Делим шаг интегрирования на два отрезка и отмечаем x1/2= x0 + h/2, проводим прямую из этой точки до прямой AB, отмечаем точку B(x1/2; y1/2);
  •  Ищем координаты В:

x1/2 = x0 + h/2 = 0 + 0.025 = 0.025

y1/2 = y0 + h/2 · f(x0; y0) = 4 +  0.025· 0= 4

Следовательно, точка B имеет координаты (0.025; 4);

Ищем угол наклона касательной к графику в точке B:

Tgα1=2*0.025*4/0.025+1=0.1951 рад. α1=0.1977

  •  Строим касательную BC в точке B под углом α1;
  •  Проводим прямую x1 = 0.05 до пересечения с прямой BC, отмечаем точку C с координатами (x1; y1);
  •  Ищем y1 :

y1 = y1/2 + h/2(f(x1/2;y1/2)) = 4 + 0.025 · 0.1977 = 4.0049

Следовательно, точка C имеет координаты (0.05; 4.0049).

yi+1 = yi + hf(xi + h/2, yi + h/2 ∙ f(xi, yi))

Рис2. Решение задачи методом Эйлера модифицированного


                                          Блок-схема программы

                                 Блок-схема описания функции:


Виды форм проекта

         Исходная форма:

        Итоговая форма:

Листинг программы на языке Visual Basic

Dim x(25) As Single, y1(25) As Single, y2(25) As Single, y3(25) As Single

Private x0 As Single

Private xk As Single

Function f(x, y As Single) As Single

   f = 2 * y * x / (x + 1)

End Function

Private Sub Command1_Click()

Dim k, k1, k2, k3, k4, y0, r As Single

Dim i

   x0 = Val(text1.Text)

   xk = Val(Text2.Text)

   h = Val(Text3.Text)

   y0 = Val(Text4.Text)

   e = 2.7

   n = Round((xk - x0) / h)

   c = (y0 * (x0 + 1) ^ 2) / e ^ (2 * x0)

   MSFlexGrid1.Rows = n + 2

   MSFlexGrid1.TextMatrix(0, 0) = "X"

   MSFlexGrid1.TextMatrix(0, 1) = "Y(Э)"

   MSFlexGrid1.TextMatrix(0, 2) = "Y(ЭМ)"

   MSFlexGrid1.TextMatrix(0, 3) = "Y(О)"

   Max = 0

   Min = y0

   y2(i) = y0

   y3(i) = y0

For i = 0 To n

   x(i) = x0 + i * h

   MSFlexGrid1.TextMatrix(i + 1, 0) = x(i)

   y1(i) = (e ^ (2 * x(i))) * c / (x(i) + 1) ^ 2

   MSFlexGrid1.TextMatrix(i + 1, 3) = Str(Round(y1(i), 4))

    y2(i + 1) = y2(i) + h * f(x(i) + h / 2, y2(i) + h / 2 * f(x(i), (y2(i))))

   MSFlexGrid1.TextMatrix(i + 1, 2) = Str(Round(y2(i), 4))

   y3(i + 1) = y3(i) + h * f(x(i), y3(i))

   MSFlexGrid1.TextMatrix(i + 1, 1) = Str(Round(y3(i), 4))

   

If y1(i) > Max Then Max = y1(i)

If y1(i) < Min Then Min = y1(i)

Next i

   Label5.Caption = Str(Round(Max, 4))

   Label6.Caption = Str(Round(Min, 4))

   Label7.Caption = Str(x0)

   Label8.Caption = Str(xk)

   Picture1.Cls

       kx = (Picture1.Width - 1190) / (xk - x0)

       ky = (Picture1.Height - 1600) / (Max - Min)

               

For i = 1 To n - 1

   z1 = Round(250 + (x(i) - x0) * kx)

   z2 = Round(5045 - (y1(i) - Min) * ky)

   z3 = Round(250 + (x(i + 1) - x0) * kx)

   z4 = Round(5045 - (y1(i + 1) - Min) * ky)

   Picture1.Line (z1, z2)-(z3, z4)

   

   z1 = Round(250 + (x(i) - x0) * kx)

   z2 = Round(5045 - (y3(i) - Min) * ky)

   z3 = Round(250 + (x(i + 1) - x0) * kx)

   z4 = Round(5045 - (y3(i + 1) - Min) * ky)

   Picture1.Line (z1, z2)-(z3, z4)

   

   z1 = Round(250 + (x(i) - x0) * kx)

   z2 = Round(5045 - (y2(i) - Min) * ky)

   z3 = Round(250 + (x(i + 1) - x0) * kx)

   z4 = Round(5045 - (y2(i + 1) - Min) * ky)

   Picture1.Line (z1, z2)-(z3, z4)

Next i

End Sub


                          
Решение задачи в MathCAD

 
                                                        Вывод
 

Вывод

В данной курсовой работе я работала над визуализацией численных методов. Мною была разработана программа, которая наглядно описывает решение дифференциального уравнения методом Эйлера и методом Эйлера модифицированного.      

По получившейся таблице, состоящей из четырёх столбцов (столбца значений Х, столбца решения методом Эйлера, столбца решения методом Эйлера модифицированного, столбца общего решения) видно, что значения столбца решения методом Эйлера модифицированного отличаются от значений столбца общего решения меньше, нежели значения столбца решений методом Эйлера.

На графике, построенном в Visual Basic, наглядно показаны решения дифференциального уравнения

.

На графике видно, что кривая решения методом Эйлера модифицированного находится ближе к кривой общего решения, чем кривая решения методом Эйлера.

Сравнив решения, полученные методом Эйлера и методом Эйлера модифицированного, с общим решением можно сделать следующий вывод: наиболее точное решение дифференциального уравнения даёт метод Эйлера модифицированного, а метод Эйлера имеет погрешность немного большую, чем у метода Эйлера модифицированного.

Данная курсовая позволила мне закрепить навыки работы в различных приложениях WINDOWS,таких как: Microsoft Office Word, MathCad 12, AutoCAD и, конечно же, основная работа была проведена в Microsoft Visual Basic 6.0.

Курсовая работа на тему: «Визуализация численных методов» выполнена в соответствии с указаниями преподавателя.


 

А также другие работы, которые могут Вас заинтересовать

68385. Управление персоналом 284 KB
  Выполняя функцию администратора менеджер использует свои полномочия для обеспечения движения системы в соответствии с заданными нормативными актами и с учетом экономической ситуации, не допуская при этом многоначалия, диффузии распорядительства и неисполнительности.
68386. История экологии 29 KB
  Геккель назвал термином экология новый раздел биологии изучающий совокупность всех взаимосвязей между живыми и неживыми компонентами природной среды который по мере накопления новых знаний превратился в самостоятельную науку. Среди различных материальных домов где живёт человек экология имеет дело...
68387. Предмет экологии, ее структура, задачи экологии 90 KB
  Из всех живых организмов человек наиболее старается изменить природу, используя и приспосабливая её для своих нужд. Сегодня, благодаря развитию науки и техники, человек способен вторгаться во все микро- и макромиры, во все процессы, протекающие в биосфере.
68388. Принципы построения систем отображения информации в авиационных геоинформационных комплексах 1.69 MB
  Классификация систем отображения информации. Как следует из представленной схемы канал вывода видеоинформации состоит из четырех представлений объектов: ПМ СДФ ЛДФ и экрана дисплея с тремя логическими процессорами последовательно преобразующих одно представление изображения в другое: КДФ ДП и ДК.
68389. Перевозка угля от станции Бугач до коммунального бытового сектора 414 KB
  Характеристика груза. Выбор средств погрузкиразгрузки. Основные принципы выбора автотранспортных средств. Грузовместимость кузова. Партионность перевозок груза. Допустимая осевая нагрузка. Натуральные и экономические критерии. Разработка рациональной транспортно технологической схемы доставки грузов.
68390. Основные понятия, определения и элементы географической карты 7.08 MB
  В литературе чаще всего карты определяют как образно-знаковые модели действительности. Основными элементами географической карты являются картографическое изображение и его математическая основа. Картографическое изображение – это все условные обозначения, которые отражают на карте все явления...
68391. Применение топографических карт при изучении местности 501 KB
  Изображение рельефа способом горизонталей предоставляет широкие возможности для всестороннего изучения рельефа – особенностей его морфологического строения, количественных характеристик, условий хозяйственного использования местности.
68392. Общая характеристика баз картографических данных в АГК и картографических срезов 2.2 MB
  Одной из функций АГК является ввод обработка хранение и вывод по запросам оператора разнообразных картографических данных и специальных сведений о местности. Такая информация должна быть заложена в базах данных АГК что возможно лишь тогда когда они построены с учетом методов технологии цифровой картографии.
68393. Теплопроводность. Общее положение теории теплопроводности 137 KB
  Аналитическое и численное исследование процессов теплопроводности сводится обычно к изучению пространственно-временного распределения температуры в теле т. Температурным полем тела или системы тел называется совокупность значения температуры взятое по его объему...