30063

Визуализация численных методов. Решение задачи в MathCAD

Курсовая

Информатика, кибернетика и программирование

Дифференциальными называются уравнения, связывающие независимую переменную, искомую функцию и ее производные. Решением ДУ называется функция, которая при подстановке в уравнение обращает его в тождество. Лишь очень немногие из таких уравнений удается решить без помощи вычислительной техники. Поэтому численные методы решения ДУ играют важную роль в практике инженерных расчетов

Русский

2014-08-21

187.5 KB

3 чел.

СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ТЕЛЕКОММУИКАЦИЙ ИИНФОРМАТИКИ

Уральский технический институт связи и информатики Факультет телекоммуникаций

Кафедра физики, прикладной математики и информатики

Курсовая по информатике

на тему:

«Визуализация численных методов»

       Студент: Паньшин Артем Андреевич

               Группа:  ОЕ-71

      Преподаватель: Минина Елена Евгеньевна

 

г. Екатеринбург, 2008

Оглавление

Введение…………………………………………………………… 3

Постановка задачи ………………………………………………. 4

Описание используемых методов…………………………….. 5

Блок-схемы ……………………….……………………………….8

Виды форм проекта……………………………………………. 11

Листинг программы на языке Visual Basic…………………. 12

Решение задачи в MathCAD ……………………………..…... .14

Вывод……………………………………………………….…….. .15


Введение

Дифференциальными называются уравнения, связывающие независимую переменную, искомую функцию и ее производные. Решением ДУ называется функция, которая при подстановке в уравнение обращает его в тождество. Лишь очень немногие из таких уравнений удается решить без помощи вычислительной техники. Поэтому численные методы решения ДУ играют важную роль в практике инженерных расчетов. Дифференциальные уравнения - уравнения, связывающие между собой независимую  переменную , искомую функцию и ее производную.

Если решить сложно или невозможно, используют числовые методы, то есть приближенные значения. В числовых методах обязательно используют начальные условия, чтобы исключить константу.

Числовые методы позволяют построить интегральную кривую по точкам. В зависимости от того, сколько точек используется для расчета очередной точки интегральной кривой, все численные методы делятся на одношаговые и многошаговые. В нашем случае мы используем одношаговые численные методы.

Основные цели  работы:

Целью моей работы является изучение основ системы программирования Microsoft  Visual  Basic и приобретение начальных навыков разработки программного обеспечения для операционных систем  Windows.


Постановка задачи

Решить методами Эйлера и Эйлера модифицированного задачу Коши для дифференциального уравнения 1-го порядка 2*x*y*dx-(x+1)=0

на отрезке [0; 0.8] с шагом h=0.05 и начальным условием: Y(0) = 4. Общее решение: y=exp(2*x)*C/(x+1)^2

Ответ должен быть получен в виде таблицы результатов:

X

Y(1)

Y(2)

YT

X0

Y0(1)

Y0(2)

Y(X0)

X1

Y1(1)

Y1(2)

Y(X1)

Xk

Yk(1)

Yk(2)

Y(Xk)

Где: Y(1) - решение, полученное методом Эйлера, Y(2) – решение, полученное методом Эйлера модифицированного, YT – точное решение дифференциального уравнения.

Данные таблицы визуализировать на форме в виде графиков.

Перед вычислением последнего столбца таблицы результатов необходимо из начальных условий вычесть значение коэффициента c, используемого в общем решении.


Описание используемых методов

МЕТОД ЭЙЛЕРА

 Этот  метод  называют   методом  Рунге-Кутта  первого   порядка точности.

Данный метод одношаговый. Табулирование функции происходит поочередно в каждой точке. Для расчета значения функции в очередном узле необходимо использовать значение функции в одном предыдущем узле.

       Для решения поставленной задачи выполняем следующие действия:

  •  Строим оси координат;
  •  Отмечаем точку A(0; 4) – первую точку интегральной кривой;
  •   Ищем угол наклона касательной к графику в точке A:

  •  Строим касательную AB в точке А под углом α0;
  •  Находим х1 по формуле: xi = х0 + ih, где h – шаг интегрирования

x1 = 0 + 1 · 0.05 = 0.05;

  •  Проводим прямую x = x1 = 0.05  до пересечения с прямой AB, отмечаем точку B(x1; y1);
  •  Ищем  y1:

Из прямоугольного треугольника ABC ,

Δy = y1 y0,

 y1 y0= Δx· tg α0

Δx = x1 – x0 = h => y1 = y0 + h · (f(x0; y0)) = 4 + 0.05  f(0;4) = 4+0.05*0= 4

Следовательно, точка B имеет координаты (0.05; 4).

Следующую точку будем искать аналогичным способом по формуле расчета очередной точки интегральной функции:

(*)

Рис1. Решение задачи методом Эйлера.

Его существенный недостаток - большая погрешность вычислений.

МЕТОД ЭЙЛЕРА МОДИФИЦИРОВАННЫЙ

Для уменьшения погрешности вычислений часто используется модифицированный метод Эйлера. Этот метод имеет так же следующие названия: метод Эйлера-Коши или метод Рунге-Кутта второго порядка точности.

Для решения поставленной задачи выполняем следующие действия:

  •  Строим оси координат;
  •  Отмечаем А(0; 4) – первую точку интегральной кривой;
  •  Ищем угол наклона касательной к графику в точке A:

  •  Строим касательную AB в точке А под углом α0;
  •  Находим х1 по формуле: xi = х0 + ih, где h – шаг интегрирования

x1 = 0 + 0.05 · 1 = 0.05;

  •  Делим шаг интегрирования на два отрезка и отмечаем x1/2= x0 + h/2, проводим прямую из этой точки до прямой AB, отмечаем точку B(x1/2; y1/2);
  •  Ищем координаты В:

x1/2 = x0 + h/2 = 0 + 0.025 = 0.025

y1/2 = y0 + h/2 · f(x0; y0) = 4 +  0.025· 0= 4

Следовательно, точка B имеет координаты (0.025; 4);

Ищем угол наклона касательной к графику в точке B:

Tgα1=2*0.025*4/0.025+1=0.1951 рад. α1=0.1977

  •  Строим касательную BC в точке B под углом α1;
  •  Проводим прямую x1 = 0.05 до пересечения с прямой BC, отмечаем точку C с координатами (x1; y1);
  •  Ищем y1 :

y1 = y1/2 + h/2(f(x1/2;y1/2)) = 4 + 0.025 · 0.1977 = 4.0049

Следовательно, точка C имеет координаты (0.05; 4.0049).

yi+1 = yi + hf(xi + h/2, yi + h/2 ∙ f(xi, yi))

Рис2. Решение задачи методом Эйлера модифицированного


                                          Блок-схема программы

                                 Блок-схема описания функции:


Виды форм проекта

         Исходная форма:

        Итоговая форма:

Листинг программы на языке Visual Basic

Dim x(25) As Single, y1(25) As Single, y2(25) As Single, y3(25) As Single

Private x0 As Single

Private xk As Single

Function f(x, y As Single) As Single

   f = 2 * y * x / (x + 1)

End Function

Private Sub Command1_Click()

Dim k, k1, k2, k3, k4, y0, r As Single

Dim i

   x0 = Val(text1.Text)

   xk = Val(Text2.Text)

   h = Val(Text3.Text)

   y0 = Val(Text4.Text)

   e = 2.7

   n = Round((xk - x0) / h)

   c = (y0 * (x0 + 1) ^ 2) / e ^ (2 * x0)

   MSFlexGrid1.Rows = n + 2

   MSFlexGrid1.TextMatrix(0, 0) = "X"

   MSFlexGrid1.TextMatrix(0, 1) = "Y(Э)"

   MSFlexGrid1.TextMatrix(0, 2) = "Y(ЭМ)"

   MSFlexGrid1.TextMatrix(0, 3) = "Y(О)"

   Max = 0

   Min = y0

   y2(i) = y0

   y3(i) = y0

For i = 0 To n

   x(i) = x0 + i * h

   MSFlexGrid1.TextMatrix(i + 1, 0) = x(i)

   y1(i) = (e ^ (2 * x(i))) * c / (x(i) + 1) ^ 2

   MSFlexGrid1.TextMatrix(i + 1, 3) = Str(Round(y1(i), 4))

    y2(i + 1) = y2(i) + h * f(x(i) + h / 2, y2(i) + h / 2 * f(x(i), (y2(i))))

   MSFlexGrid1.TextMatrix(i + 1, 2) = Str(Round(y2(i), 4))

   y3(i + 1) = y3(i) + h * f(x(i), y3(i))

   MSFlexGrid1.TextMatrix(i + 1, 1) = Str(Round(y3(i), 4))

   

If y1(i) > Max Then Max = y1(i)

If y1(i) < Min Then Min = y1(i)

Next i

   Label5.Caption = Str(Round(Max, 4))

   Label6.Caption = Str(Round(Min, 4))

   Label7.Caption = Str(x0)

   Label8.Caption = Str(xk)

   Picture1.Cls

       kx = (Picture1.Width - 1190) / (xk - x0)

       ky = (Picture1.Height - 1600) / (Max - Min)

               

For i = 1 To n - 1

   z1 = Round(250 + (x(i) - x0) * kx)

   z2 = Round(5045 - (y1(i) - Min) * ky)

   z3 = Round(250 + (x(i + 1) - x0) * kx)

   z4 = Round(5045 - (y1(i + 1) - Min) * ky)

   Picture1.Line (z1, z2)-(z3, z4)

   

   z1 = Round(250 + (x(i) - x0) * kx)

   z2 = Round(5045 - (y3(i) - Min) * ky)

   z3 = Round(250 + (x(i + 1) - x0) * kx)

   z4 = Round(5045 - (y3(i + 1) - Min) * ky)

   Picture1.Line (z1, z2)-(z3, z4)

   

   z1 = Round(250 + (x(i) - x0) * kx)

   z2 = Round(5045 - (y2(i) - Min) * ky)

   z3 = Round(250 + (x(i + 1) - x0) * kx)

   z4 = Round(5045 - (y2(i + 1) - Min) * ky)

   Picture1.Line (z1, z2)-(z3, z4)

Next i

End Sub


                          
Решение задачи в MathCAD

 
                                                        Вывод
 

Вывод

В данной курсовой работе я работала над визуализацией численных методов. Мною была разработана программа, которая наглядно описывает решение дифференциального уравнения методом Эйлера и методом Эйлера модифицированного.      

По получившейся таблице, состоящей из четырёх столбцов (столбца значений Х, столбца решения методом Эйлера, столбца решения методом Эйлера модифицированного, столбца общего решения) видно, что значения столбца решения методом Эйлера модифицированного отличаются от значений столбца общего решения меньше, нежели значения столбца решений методом Эйлера.

На графике, построенном в Visual Basic, наглядно показаны решения дифференциального уравнения

.

На графике видно, что кривая решения методом Эйлера модифицированного находится ближе к кривой общего решения, чем кривая решения методом Эйлера.

Сравнив решения, полученные методом Эйлера и методом Эйлера модифицированного, с общим решением можно сделать следующий вывод: наиболее точное решение дифференциального уравнения даёт метод Эйлера модифицированного, а метод Эйлера имеет погрешность немного большую, чем у метода Эйлера модифицированного.

Данная курсовая позволила мне закрепить навыки работы в различных приложениях WINDOWS,таких как: Microsoft Office Word, MathCad 12, AutoCAD и, конечно же, основная работа была проведена в Microsoft Visual Basic 6.0.

Курсовая работа на тему: «Визуализация численных методов» выполнена в соответствии с указаниями преподавателя.


 

А также другие работы, которые могут Вас заинтересовать

11232. THE ETHICAL AND CULTURAL HERITAGE OF THE BIBLE: SINS AND STRUGGLE WITH THEM AS DESCRIBED IN THE BIBLE 24 KB
  THE ETHICAL AND CULTURAL HERITAGE OF THE BIBLE: SINS AND STRUGGLE WITH THEM AS DESCRIBED IN THE BIBLE. To start with I should say that there are some sins called deadly sins because they are especially ruinous for one’s soul. They are pride covetousness lust envy gluttony anger sloth other sins are idle talk filthy language slander bribery sponging murder magic and witchcraft adultery fornication violation incest and cruelty. All of them are originated from the 7 ...
11233. TALK ABOUT THE MAIN IDEAS AND CHARACTERS OF THE BOOK YOU’VE READ AND DISCUSSED IN CLASS 24.5 KB
  TALK ABOUT THE MAIN IDEAS AND CHARACTERS OF THE BOOK YOU’VE READ AND DISCUSSED IN CLASS. Oscar Wilde was an Irish playwright poet and author of numerous stories and one novel. Known for his biting wit he became one of the most successful playwrights of the late Victorian era in London and one of the greatest celebrities of his day. Wilde suffered a dramatic downfall and was imprisoned for two years; after Wilde was released from prison he set sail for Dieppe by the night ferry. He nev...
11234. TALK ABOUT UNFORTUNATE EXPERIENCEOF A HOLIDAY ARRANGED THOUGH A TRAVEL AGENCY 24.5 KB
  TALK ABOUT UNFORTUNATE EXPERIENCEOF A HOLIDAY ARRANGED THOUGH A TRAVEL AGENCY. First of all I’d like to say that traveling is necessary for all of us as it’s a kind of relaxation and a good opportunity to relax your body renew your energy and refresh your spirits. Many people adore visiting beautiful places and look forward to going on holiday just to escape daily grind of work and daytoday pressures and get away from their usual sources of stress. Sometimes you need a change and...
11235. GIVE A COMPARATIVE DESCRIPTION OF SOME ANCIENT ENGLISH TOWNS 26 KB
  GIVE A COMPARATIVE DESCRIPTION OF SOME ANCIENT ENGLISH TOWNS. To start with I should say that Britain is a fabulous country a country of startling beauty and diversity it’s really worth exploring visiting and living in. It’s packed with exiting places to go and interesting place to discover. Everyone who comes to England is fascinated by its magnificent picturesque breathtaking and inviting towns where past and present exist side by side. Some of the ancient towns in England are Sa...
11236. Describe a journey that went wrong for some reason 24 KB
  Describe a journey that went wrong for some reason First of all I’d like to say that travelling is necessary for all of us as it’s a kind of relaxation and a good opportunity to relax your body renew your mind and refresh the spirit. Many people are keen on travelling and they look forward to going on a holiday just to escape a daily grind of work daytoday pressures and get away from usual sources of stress. But journey is not always a fun. Sometimes it can even t...
11237. Talk about a short trip to Edinburgh and what you can see there 24 KB
  Talk about a short trip to Edinburgh and what you can see there. Traveling is necessary for all of us as it is a kind of relaxation and a good opportunity to relax your body broadens our mind as well. Many people like visiting beautiful places and look forward to going on a holiday just to escape from their daily routine even if their trip will be very short. There are many fascinating cities all over the world. And Edinburgh is one of them. A coach tour of this city will ta...
11238. Предприятие - основное звено экономики 77 KB
  1 Предприятие – основное звено экономики 1.1 Предприятие – основное звено экономики. Предприятие в рыночной среде. 1.2 Классификация предприятий. 1.3 Организационноправовые формы предприятий. 1.4 Производственная структура. 1.1 Предприятие – основное звено экономи...
11240. Планирование производства и реализации продукции на предприятиях 72.5 KB
  2. Планирование производства и реализации продукции на предприятиях 2.1 Планирование производства продукции на предприятии 2.2 Обоснование плана производства по расчётам плановой мощности 2.3 Виды производственных мощностей порядок их расчета и пути улучшения испо