30071

Метод Эйлера модифицированный

Книга

Информатика, кибернетика и программирование

Для уменьшения погрешности вычислений метода Эйлера часто используется модифицированный метод Эйлера. Этот метод имеет так же следующие названия: метод ЭйлераКоши или метод РунгеКутта второго порядка точности. При использовании модифицированного метода Эйлера шаг делится на два отрезка. Модифицированный метод Эйлера дает меньшую погрешность нежели метод Эйлера.

Русский

2013-08-22

336.74 KB

5 чел.

Метод Эйлера модифицированный.

Для уменьшения погрешности вычислений метода Эйлера часто используется модифицированный метод Эйлера. Этот метод имеет так же следующие названия: метод Эйлера-Коши или метод Рунге-Кутта второго порядка точности.

 Пусть дано дифференциальное уравнение первого порядка:

с начальным условием:  

Выберем шаг:

         и введём обозначения:      и , где  …,

                                -узлы сетки,

                                -значение интегральной функции в узлах.

При использовании модифицированного метода Эйлера шаг делится на два отрезка.

Проведём решение в несколько этапов. Обозначим точки:

А(,), С(, и В.          Через точку А проведём прямую под углом , где:

                           .

На этой прямой найдём точку:                                         С(,. Через точку С проведём прямую под углом, где

                   ,.

Через точку А проведём прямую, параллельную последней прямой.

Найдём точку В. Будем считать В решением дифференциального уравнения при .

После проведения некоторых вычислений, получим формулу для определения значения :

.

Модифицированный метод Эйлера дает меньшую погрешность, нежели метод Эйлера. Величина характеризует погрешность метода Эйлера модифицированного.


Метод Рунге-Кутта 4-го порядка.

 Для большего уменьшения погрешности используется метод Рунге-Кутта четвёртого порядка точности(метод Рунге-Кутта).

Пусть дано дифференциальное уравнение первого порядка:

с начальным условием:

.

Выберем шаг:

    =0,1

и введём обозначения:

и , где =0,1,2…,

                               -узлы сетки,

                               -значение интегральной функции в узлах.

     

При использовании модифицированного метода Рунге-Кутта шаг делится на четыре отрезка. Согласно этому методу, последовательные значения исходной функции определяются по формуле:

, где

,

А числа    на каждом шаге вычисляются по формулам:

 Это явный четырёхэтапный метод четвёртого порядка точности.

 Метод Рунге-Кутта даёт погрешность меньше, чем методы Эйлера и Эйлера модифицированного.

Все методы Рунге-Кутта легко программируются и обладают значительной точностью и устойчивостью для широкого круга задач.


Метод Эйлера

1. Строим оси координат;

2. Отмечаем A(1; 1) – первую точку интегральной кривой;

3. Ищем угол наклона касательной к графику в точке A:

α= arctg(f(x0; y0))=arctg(f(1; 1))=arctg(2)=70,4º

4. Строим касательную l0 в точке А под углом α0;

5. Находим х1 по формуле: xi = х0 + ih, где h – шаг интегрирования

x1 = 1+ 1 · 0,1 = 1,1

6. Проводим прямую x = x1 = 0,1  до пересечения с прямой l0, отмечаем точку B(x1; y1);

7. Ищем y точки B:

Из прямоугольного треугольника ABC ,

Δy = y1 y0,

Δx = x1x0 = h,

f(x0; y0) = (y1y0)/h =>

y1 = y0 + h · (f(x0; y0)) = 1 + 0,1 · f(1; 1) = 1,2

Следовательно, точка B имеет координаты (1.1;  1.2).


Метод Рунге-Кутта 4 порядка

1. Строим оси координат;

2. Отмечаем А(1,2; 1) – первую точку интегральной кривой;

3. Ищем угол наклона касательной к графику в точке A:

4. Строим касательную l0 в точке А под углом α0;

5. Находим х1 по формуле: xi = х0 + ih

x1 = 1,2 + 1 · 0,1 = 1,3;

  1.  Находим по формулам:

k1=0,1·f(1,2; 1)=0,1*(-0.55)=-0,055

k2=0,1· f(1,2+0,1/2; 1+(-0,055)/2)=-0,05403

k3=0,1· f(1,2+0,1/2; 1+(-0,054)/2)=-0,05406

k4=0,1· f(1,2+0,1; 1+(-0,05406))=-0,05346

y1=((-0,055)+2*(-0,05403)+2*(-0,05406)+(-0,05346))/6=-0,03619

y2=1+(-0,03619)=0,964

Следовательно, следующая точка графика решения имеет координаты (1,3; 0,964)


 

А также другие работы, которые могут Вас заинтересовать

84282. Маслянокислое брожение. Химизм процесса. Возбудители. Практическое использование и роль в процессах порчи пищевых продуктов 32.61 KB
  Эти бактерии могут сбраживать многие углеводы, в т.ч. (крахмал, гликоген, пектиновые вещества, целлюлозу), спирты (этиловый, маннит, глицерин) и аминокислоты. По характеру используемых субстратов маслянокислые бактерии делятся на две группы: сахаролитические клостридии, которые сбраживают в основном углеводы
84283. Уксуснокислое брожение. Химизм процесса. Возбудители. Практическое использование и роль в процессах порчи пищевых продуктов 31.83 KB
  Возбудителями уксуснокислого брожения являются уксуснокислые бактерии относящиеся к двум родам: Gluconobcter и cetobcter. Бактерии кислотоустойчивы оптимальное значение рН для развития 5463. С другой стороны уксуснокислые бактерии являются вредителями спиртового пивоваренного консервного производств виноделия производства безалкогольных напитков.
84284. Окисление жиров и высших жирных кислот микроорганизмами. Микроорганизмы - возбудители порчи жиров 32.33 KB
  Микроорганизмы возбудители порчи жиров Жиры представляют собой сложные эфиры глицерина и высших жирных кислот. Практическое значение процесса Процесс разложения жиров отмерших животных и растений происходит постоянно и имеет большое значение в круговороте веществ в природе. С другой стороны в пищевой промышленности микроорганизмы окисляющие жиры приносят вред вызывая порчу пищевых жиров и жира содержащихся в различных пищевых продуктах.
84285. Гнилостные процессы. Понятие об аэробном и анаэробном гниении. Возбудители. Роль гнилостных процессов в природе, в пищевой промышленности 33.82 KB
  Белки высокомолекулярные соединения поэтому вначале они подвергаются внеклеточному расщеплению протеолитическими ферментами микроорганизмов которые являются экзоферментами. Конечными продуктами аэробного гниения являются кроме аммиака диоксид углерода сероводород и меркаптаны обладающие запахом тухлых яиц. Конечными продуктами анаэробного гниения являются продукты декарбоксилирования аминокислот отнятие карбоксильной группы с образованием дурно пахнущих веществ: индола акатола фенола крезола диаминов их производные являются...
84286. Характеристика пищевых заболеваний. Отличия пищевых инфекций от пищевых отравлений 27.71 KB
  Отличия пищевых инфекций от пищевых отравлений Пищевые алиментарные заболевания заболевания причиной которых служит пища инфицированная токсигенными микроорганизмами или токсинами микробов рис.1 Сравнительная характеристика пищевых заболеваний № Пищевые инфекции Пищевые отравления 1. Возбудители в пищевых продуктах не размножаются но могут длительное время сохраняться.
84287. Патогенные и условно-патогенные микроорганизмы. Их основные свойства. Химический состав и свойства микробных токсинов 34.57 KB
  Химический состав и свойства микробных токсинов Возбудителями пищевых инфекций являются патогенные микроорганизмы к основным свойствам которых относятся: Патогенность потенциальная способность определенного вида микробов приживаться в макроорганизме размножаться и вызывать определенное заболевание. Все патогенные микроорганизмы относятся к хемоорганогетеротрофам которые в качестве источника углерода и азота используют органические соединения из живых клеток паразиты. Возбудителями пищевых отравлений являются условнопатогенные...
84288. Инфекции. Источники и пути передачи инфекции. Виды пищевых инфекций и характеристика возбудителей. Профилактика пищевых инфекций 39.59 KB
  Источники и пути передачи инфекции. Источники инфекции больной человек или животное а также бактерио бацилло и вируносители люди и животные невосприимчивые к данному заболеванию а также перенесшие это заболевание. Пути передачи инфекции: Прямой контакт от больного человека к здоровому. Пищевые инфекции такие инфекционные заболевания при которых пищевые продукты являются только передатчиками токсигенных микроорганизмов.
84289. Понятие об иммунитете. Виды иммунитета. Вакцины и сыворотки 29.58 KB
  Виды иммунитета. Вакцины и сыворотки Иммунитет невосприимчивость макроорганизма к инфекционным заболеваниям и чужеродным антигенам. Иммунитет может быть инфекционный и неинфекционный.
84290. Пищевые отравления: токсикоинфекции и интоксикации. Характеристика возбудителей пищевых отравлений 62.5 KB
  Пищевые токсикоинфекции – отравления, возникающие при приеме пищи, содержащей большое количество живых токсигенных бактерий. Возбудители токсикоинфекций образуют эндотоксины, прочно связанные с клеткой, которые при жизни микроорганизма в окружающую среду не выделяются