30118

Хромосомные мутации и геномные мутации

Доклад

Биология и генетика

Хромосомные мутации и геномные мутации. Различают два основных типа хромосомных мутаций: численные хромосомные мутации и структурные хромосомные мутации. В свою очередь численные мутации делятся на анэуплоидии когда мутации выражаются в утрате или появлении дополнительной одной либо нескольких хромосом и полиплоидии когда увеличивается число гаплоидных наборов хромосом. Потерю одной из хромосом называют моносомией а возникновение дополнительной хромосомы у любой пары хромосом трисомией.

Русский

2013-08-22

16.53 KB

10 чел.

16. Хромосомные мутации и геномные мутации.

Различают два основных типа хромосомных мутаций: численные хромосомные мутации и структурные хромосомные мутации. В свою очередь, численные мутации делятся на анэуплоидии, когда мутации выражаются в утрате или появлении дополнительной одной либо нескольких хромосом, и полиплоидии, когда увеличивается число гаплоидных наборов хромосом. Потерю одной из хромосом называют моносомией, а возникновение дополнительной хромосомы у любой пары хромосом — трисомией. Структурные хромосомные мутации представлены транслокациями, делециями, инсерциями, инверсиями, кольцами и изохромосомами.

Трисомии. Трисомией называют появление в кариотипе дополнительной хромосомы. Самым известным примером трисомии является болезнь Дауна, которую часто называют трисомией по хромосоме 21. Результатом трисомии по хромосоме 13 является синдром Патау, а по хромосоме 18 — синдром Эдвардса. Все названные трисомии — аутосомные. Другие трисомии по аутосомам нежизнеспособны, погибают внутриутробно и, по-видимому, теряются в виде спонтанных абортов. Жизнеспособными являются индивидуумы с дополнительными половыми хромосомами. Более того, клинические проявления дополнительных хромосом X или Y могут быть весьма незначительными.

Обычно трисомии возникают из-за нарушения расхождения гомологичных хромосом в анафазе мейоза I. В результате в одну дочернюю клетку попадают обе гомологичные хромосомы, а во вторую дочернюю клетку не попадает ни одна из хромосом бивалента. Иногда, однако, трисомия может быть результатом нарушения расхождения сестринских хроматид в мейозе II. В этом случае в одну гамету попадают две совершенно одинаковые хромосомы, что в случае ее оплодотворения нормальным спермием даст трисомную зиготу. Этот тип хромосомных мутаций, ведущих к трисомии, называют нерасхождением хромосом. Аутосомные трисомии возникают из-за нерасхождения хромосом, наблюдающегося преимущественно в оогенезе, но и в сперматогенезе нерасхождение аутосом также может быть. Нерасхождение хромосом может происходить и на ранних стадиях дробления оплодотворенной яйцеклетки. В этом случае в организме присутствует клон мутантных клеток, который может захватывать большую или меньшую часть органов и тканей и иногда давать клинические проявления, сходные с теми, которые наблюдают при обычной трисомии.

Причины нерасхождения хромосом остаются неясными. Известный факт связи между нерасхождением хромосом (особенно хромосомы 21) и возрастом матери до сих пор не имеет однозначной интерпретации.

Моносомии. Отсутствие любой аутосомы является в абсолютном большинстве случаев несовместимым с нормальным развитием и приводит к ранним спонтанным абортам. Очень редкое исключение — моносомия по хромосоме 21. Моносомия может быть результатом нерасхождения хромосом или потери хромосомы во время ее движения к полюсу клетки в анафазе.

Анеуплоидия по половым хромосомам. Моносомия по половым хромосомам приводит к образованию организма с кариотипом ХО, клиническим проявлением которого служит синдром Тернера. В 80% случаев моносомия по хромосоме X является результатом нарушения мейоза у отца (нерасхождение хромосом X и Y). Большинство ХО-зигот погибают внутриутробно.

Трисомия по половым хромосомам может быть трех типов — с кариотипом 47,XXY, 47,XXX и 47,XYY. Трисомия 47,XXY известна как синдром Клайнфелтера. Примерно в 50% случаев причиной синдрома является нерасхождение хромосом X в оогенезе, другие 50% случаев объясняются нерасхождением хромосом X и Y сперматогенеза. Абортируется около 50% эмбрионов с таким кариотипом. Трисомия 47,XXX является в абсолютном большинстве случаев результатом нерасхождения хромосом в гаметогенезе матери. Напротив, тримосия 47,XYY происходит в результате нарушения мейоза в гаметогенезе отца. Это нарушение может произойти только в мейозе II вследствие нерасхождения хромосом Y. Трисомии 47,XXX и 47,XYY встречаются с частотой 1 : 1000 среди женщин и мужчин соответственно, они проявляются относительно небольшими фенотипическими изменениями и обычно обнаруживаются в виде случайных находок.

Полиплоидия. Полиплоидные клетки содержат утроенный или учетверенный гаплоидный набор хромосом. У человека триплоидия обнаруживается иногда у спонтанных абортусов, известно также несколько случаев живорождений, но больные погибали в течение 1-го месяца жизни. Триплоидия может быть обусловлена нарушением мейотического расхождения всего набора хромосом в мейозе женских или мужских половых клеток. В результате либо яйцеклетка, либо сперматозоид оказываются диплоидными. В качестве механизма триплоидии рассматривают также возможность оплодотворения яйцеклеток двумя сперматозоидами. В том случае, когда триплоидия обусловлена отцовским диплоидным набором хромосом, возникает пузырное перерождение плаценты, так называемый пузырный занос.

Структурные мутации хромосом могут возникать только в результате разрыва хромосом с последующим воссоединением, сопровождающимся нарушением исходной конфигурации хромосом. Такие мутации могут быть сбалансированными или несбалансированными. При сбалансированных хромосомных мутациях нет утраты или избытка генетического материала, поэтому они не имеют фенотипических проявлений, кроме тех случаев, когда в результате разрыва хромосомы в месте разрыва оказывается функционально важный ген. В то же время у носителей сбалансированных хромосомных мутаций могут образовываться несбалансированные по хромосомному набору гаметы, и, как следствие этого, у плода, возникшего от оплодотворения такой гаметой, хромосомный набор окажется также несбалансированным. При несбалансированном хромосомном наборе у плода развиваются тяжелые клинические проявления патологии, как правило, в виде комплекса врожденных пороков развития.

Делеции. 

Дупликации.

Транслокации. 

Инсерции. Когда сегмент одной хромосомы переносится и вставляется в другую хромосому, такую перестройку называют инсерцией. Для того чтобы произошла инсерция, необходимо не менее 3 разрывов хромосом. Поскольку в случае возникновения инсерции не теряется и не добавляется новый генетический материал, такую перестройку считают сбалансированной. Однако у носителей такой инсерции 50% гамет окажутся несбалансированными, поскольку они будут нести хромосому либо с делецией, либо с инсерцией. Вследствие этого будут образовываться зиготы с частичной моносомией или частичной трисомией.

Инверсии. 

Изохромосомы. Изохромосомы возникают в тех случаях, когда центромера делится не продольно, а поперечно. В результате одно из плеч теряется, а второе удваивается. Чаще всего выявляется изохромосома, составленная из длинных плеч хромосомы X. В этом случае у индивидуума, носителя такой изохромосомы X, обнаруживают проявления синдрома Шерешевского—Тернера.

Кольцевые хромосомы. Этот тип хромосомной мутации возникает в том случае, когда разрывы наблюдаются в обоих плечах какой-то хромосомы. Ацентрические фрагменты при этом теряются, а центральная часть хромосомы замыкается в кольцо. Если такая кольцевая хромосома образуется из аутосомы, то из-за отсутствия значительной доли генетического материала этой хромосомы гамета и зигота оказываются несбалансированными, что должно привести к ранней потере зародыша с кольцевой хромосомой. Если все-таки зародыш образуется, то кольцевая хромосома имеет тенденцию теряться во время митотическихделений клеток. Как следствие, возникает мозаицизм по наличию в клетках кольцевой хромосомы.


 

А также другие работы, которые могут Вас заинтересовать

22024. Свечение, сопровождающее биохимические реакции 131.5 KB
  В последнее время все больший интерес привлекает собственное сверхслабое свечение клеток и тканей животных и человека которое обусловлено реакциями свободных радикалов: радикалов липидов и кислорода а также окиси азота соединениями играющими огромную роль в жизни организма а при определенных условиях и развитии ряда патологических состояний. свечение сопровождающее химические реакции называется хемилюминесценцией ХЛ. Процессы жизнедеятельности как теперь стало известно практически всегда сопровождаются очень слабым...
22025. Собственное свечение клеток и тканей животных 78.5 KB
  Строение Фазовые переходы липидов в мембранах Диффузия как результат случайных блужданий частиц Диффузия ионов при наличии электрического поля Кинетика реакций цепного окисления липидов Cвечение сопровождающее биохимические реакции Активированная хемилюминесценция и биолюминесценция как инструмент в медикобиологических исследованиях Метод электронного парамагнитного резонанса Кинетика химических реакций Кальциевый насос животной клетки Реакции окисления восстановления .
22026. Метод ДСК 195 KB
  Температуры плавления некоторых синтетических фосфолипидов Жирные кислоты Название остатка жирной кислоты Сокращённое название фосффолипида Температура плавления Tc oC 14:0 Миристоил ДМЛ 23 16:0 Пальмитоил ДПЛ 41 18:0 Стеароил ДСЛ 58 18:1 Олеил ДОЛ 21цисформа Полное название фосфолипидов: ДМЛ 12димиристоилфосфатидилхолин еще одно возможное сокращение ДМФХ€ и так далее. На первом этапе нас будут интерессовать три из них: Температура фазового перехода плавления Tc. T полуширина фазового перехода Tc температура...
22027. Активированная хемилюминесценция и биолюминесценция 114 KB
  Так например комплекс редкоземельного иона европия Eu3 c антибиотиком хлортетрациклином усиливает ХЛ при окислении липидов почти в 1000 раз. Хемилюминесцентный иммунный анализ По идеологии хемилюминесцентный иммунный анализ не отличается от радиоиммунного с той только разницей что вместо радиоактивномеченных субстратов или антител используются субстраты и антитела меченные соединением которое вступает в реакции сопровождающиеся хемилюминесценцией в присутствии перекиси водорода и катализатора обычно это фермент пероксидаза....
22028. Биологические мембраны Строение, свойства, функции 403 KB
  Клеточная или цитоплазматическая мембрана окружает каждую клетку. Ядро окружено двумя ядерными мембранами: наружной и внутренней. Все внутриклеточные структуры: митохондрии эндоплазматический ретикулум аппарат Гольджи лизосомы пероксисомы фагосомы синаптосомы и т представляют собой замкнутые мембранные везикулы пузырьки.
22029. Мембранные потенциалы 232.5 KB
  Более подробно межфазные и поверхностные потенциалы будут рассмотрены позже а сейчас мы рассмотрим как повлияет на перенос ионов наличие на мембране трансмембранного потенциала. Однако липидная часть мембраны состоит всегото из двух слоёв молекул фосфолипидов причём размеры подвижных звеньев цепей жирных кислот в этих молекулах соизмеримы с размерами ионов которые передвигаются внутри мембраны. Это заставляет при рассмотрении переноса ионов в мембране отказаться от полностью макроскопического подхода к явлениям и рассматривать процессы на...
22030. Перемещения иона в мембране 347 KB
  В случа переноса ионов через биомембраны за ось Х можно принять ось нормальную к мембране и направленную изнутри везикулы например клетки наружу см. Как же перемещается ион в толще липидного слоя мембраны В разделе 1 говорилось о том что такое перемещение возможно благодаря перестройке конфигурации жирнокислотных цепей и образованию нового кинка . Движение иона поперёк мембраны путём перескакивания из одного кинка в другой. На рисунке показаны не разные молекулы фосфолипидов в бислое а разные стадии процесса переноса иона...
22031. Системы передачи с временным разделением каналов 139 KB
  Напомним что для преобразования аналогового сигнала в цифровой используются операции ДИСКРЕТИЗАЦИЯ КВАНТОВАНИЕ КОДИРОВАНИЕ. Значение шума квантования зависит от количества уровней квантования скорости изменения сигнала и от спосрба выбора шага квантования. не зависит от а } = где вероятность попадания сигнала в iю зону квантования. зависит лишь от шага квантования и не зависит от уровня сигнала.
22032. Дельта - модуляция (кодирование с предсказанием) (ДИКМ) 158.5 KB
  Основные параметры характеристики компрессии по А закону приведены в таблице: № сегмента Вид кодовой комбинации P XYZ ABCD Относительный интервал изменения входного сигнала Значение шага квантования относительно Uогр 0 P 000 ABCD 0  1 128 1 2048 1 P 001 ABCD 1 128  1 64 1 2048 2 P 010 ABCD 1 64  1 32 1 1024 3 P 011 ABCD 1 32  1 16 1 512 4 P 100 ABCD 1 16  1 8 1 256 5 P 101 ABCD 1 8  1 4 1 128 6 P 110 ABCD 1 4  1 2 1 64 7 P 111 ABCD 1 2  1 1 32 Кодовая комбинация и есть код квантованного сигнала P  ABCD ...