30120

Генетика популяций. Генетическая структура популяций и идеальная популяция

Доклад

Биология и генетика

При описании систем скрещивания в идеальной популяции широко используется понятие панмиксии – случайного свободного скрещивания при котором вероятность встречи гамет не зависит ни от генотипа ни от возраста скрещивающихся особей. Если исключить половой отбор то к панмиктической популяции применима концепция гаметного резервуара согласно которой в популяции в период размножения формируется гаметный резервуар генный пул включающий банк женских гамети банк...

Русский

2015-01-16

37.55 KB

1 чел.

Генетика популяций: С точки зрения генетики, популяция – это генетическая система, обладающая исторически сложившейся генетической структурой. Основные положения популяционной генетики сложились на основании изучения природных и модельных популяций высших раздельнополых животных (моллюсков, насекомых, позвоночных), которые воспроизводят себя с помощью нормального полового размножения – амфимиксиса, или объединения женских и мужских гамет. В таких случаяхгруппировка особей, способных скрещиваться между собой и производить полноценное (т.е. жизнеспособное и плодовитое) потомство, называется генетической, или менделевской популяцией. В свою очередь, потомки, достигшие половозрелости, также должны скрещиваться между собой и производить полноценное потомство, то есть популяция должна существовать длительное число поколений. Таким образом, с точки зрения генетики, популяция представляет собой множество особей, объединенных достаточно высокой степенью родства.

В рамках генетического подхода выделяется представление об идеальной популяции.

Идеальная популяция – это абстрактное понятие, которое широко используется в моделировании микроэволюционных процессов. При описании систем скрещивания в идеальной популяции широко используется понятие панмиксии – случайного свободного скрещивания, при котором вероятность встречи гамет не зависит ни от генотипа, ни от возраста скрещивающихся особей. Если исключить половой отбор, то к панмиктической популяции применима концепция гаметного резервуара, согласно которой в популяции в период размножения формируется гаметный резервуар (генный пул), включающий банк женских гамети банк мужских гамет. Если члены популяции равноудалены друг от друга, то встреча гамет и формирование зигот происходят случайным образом. (Подробнее понятие идеальной популяции будет рассмотрено ниже.)

Реальные популяции в большей или меньшей степени отличаются от идеальной. Одним из наиболее существенных отличий является множество способов воспроизведения. По способу воспроизведения различают следующие типы популяций:

амфимиктические – основным способом размножения является нормальное половое воспроизведение;

амфимиктические панмиктические – при формировании брачных пар наблюдается панмиксия (свободное скрещивание);

амфимиктические инбредные – при формирование брачных пар наблюдается близкородственное скрещивание (инбридинг, инцухт, инцест); крайним случаем близкородственного скрещивания является самооплодотворение;

апомиктические – наблюдаются различные отклонения от нормального полового процесса, например, апомиксис, партеногенез, гиногенез, андрогенез; наблюдается у агамных (бесполых) форм;

клональные – при отсутствии полового процесса и размножении только вегетативным путем или с помощью спор бесполого размножения (например, конидий); частным случаем клонирования является полиэмбриония – развитие нескольких зародышей из одной зиготы:

комбинированные – например, клонально-амфимиктические при метагенезе у кишечнополостных (чередовании бесполого и полового размножения) и гетерогонии (чередовании партеногенетического и амфимиктического поколений у червей, некоторых членистоногих и низших хордовых).

 Генетическая структура популяций

Каждая популяция обладает собственной генетической структурой. Генетическая структура популяций определяется исходным соотношением аллелей, естественным отбором и элементарными эволюционными факторами (мутационный процесс и давление мутаций, изоляция, популяционные волны, генетико-автоматические процессы, эффект основателя, миграции и др.). Для описания генетической структуры популяций используются понятия «аллелофонд» и «генофонд».

Аллелофонд. Аллелофонд популяции – это совокупность аллелей в популяции. Если рассматриваются два аллеля одного гена: А и а, то структура аллелофонда описывается уравнением: pA + qa = 1. В этом уравнении символом pA обозначаетсяотносительная частота аллеля А, символом qaотносительная частота аллеля а.

Популяции, в которых структура аллелофонда остается относительно постоянной в течение длительного времени, называются стационарными.

Если рассматриваются три аллеля одного гена: а1, а2,, а3, то структура аллелофонда описывается уравнением: p а1 + q а2+ r а3 = 1. В этом уравнении символами p, q, r обозначаются соответствующие частоты аллелей.

Если рассматриваются несколько аллелей нескольких генов (a, b, c), то структура аллелофонда описывается системой уравнений:

p1 a1 + p2 a2 + p3 a3 + ... + pi ai = 1

q1 b1 + q2 b2 + q3 b3 + ... + qi bi = 1

r1 c1 + r2 c2 + r3 c3 + ... + ri ci = 1

.......................................................

В этих уравнениях символами pi, qi, ri обозначены относительные частоты аллелей разных генов. Однако в простейших случаях рассматриваются только моногенные диаллельные системы, например: А–а. В популяции с общей численностью особейNобщ и известной численностью особей с генотипами АА, Аа, аа относительные частоты аллелей рассчитываются по формулам:

 

p (A) =

2 Í N (AA) + N (Aa)

2 Í N общ.

 

q (a) =

2 Í N (aa) + N (Aa)

2 Í N общ.

 

или q (a) = 1 – р (А)

 Генофонд. Термин генофонд употребляется в разных значениях. Основоположник учения о генофонде и геногеографии Александр Сергеевич Серебровский называл генофондом «совокупность всех генов данного вида..., чтобы подчеркнуть мысль о том, что в лице генофонда мы имеем такие же национальные богатства, как и в лице наших запасов угля, скрытых в наших недрах» (1928). Однако это выражение в настоящее время используется для определения генетического потенциала, а генофондом называют совокупность всех генотипов в популяции.

При изучении природных популяций часто приходится сталкиваться с полным доминированием: фенотипы гомозигот ААи гетерозигот Аа неразличимы. Кроме того, в природе широко распространено полигенное определение признаков, причем типы взаимодействия неаллельных генов (комплементарность, эпистаз, полимерия) не всегда известны. Поэтому на практике часто изучают не генофонд, а фенофонд популяций, то есть соотношение фенотипов. В настоящее время развивается раздел генетики популяций, который называется фенетика популяций. 

Генотипическое равновесие существует в популяции, если соотношение генотипов в ней неизменно.

Закон Харди-Вайнберга — это закон популяционной генетики — в популяции бесконечно большого размера, в которой не действует отбор, не идет мутационный процесс, отсутствует обмен особями с другими популяциями, не происходит дрейф генов, все скрещивания случайны — частоты генотипов по какому-либо гену (в случае если в популяции есть два аллеля этого гена) будут поддерживаться постоянными из поколения в поколение и соответствовать уравнению:

p² + 2pq + q² = 1

Где p² — доля гомозигот по одному из аллелей; p — частота этого аллеля; q² — доля гомозигот по альтернативному аллелю; q — частота соответствующего аллеля; 2pq — доля гетерозигот.

Биологический смысл закона:

Процесс наследования не влияет сам по себе на частоту аллелей в популяции, а возможные изменения её генетической структуры возникают вследствие других причин.

Условия действия закона:

Закон действует в идеальных популяциях, состоящих из бесконечного числа особей, полностью панмиктических и на которых не действуют факторы отбора.

Равновесие закона в реальных популяциях:

На реальные популяции в той или иной степени действуют факторы, небезразличные для поддержания равновесия Харди — Вайнберга по каким-либо генетическим маркерам. В популяциях многих видов растений или животных распространены такие явления как инбридинг и самооплодотворение — в таких случаях происходит уменьшение доли или полное исчезновение класса гетерозигот. В случае сверхдоминирования наоборот, доли классов гомозигот будут меньше расчётных.

Практическое значение закона:

В медицинской генетике закон Харди-Вайнберга позволяет оценить популяционный риск генетически обусловленных заболеваний, поскольку каждая популяция обладает собственным аллелофондом и, соответственно, разными частотами неблагоприятных аллелей. Зная частоты рождения детей с наследственными заболеваниями, можно рассчитать структуру аллелофонда. В то же время, зная частоты неблагоприятных аллелей, можно предсказать риск рождения больного ребёнка.

В селекции — позволяет выявить генетический потенциал исходного материала (природных популяций, а также сортов и пород народной селекции), поскольку разные сорта и породы характеризуются собственными аллелофондами, которые могут быть рассчитаны с помощью закона Харди-Вайнберга. Если в исходном материале выявлена высокая частота требуемого аллеля, то можно ожидать быстрого получения желаемого результата при отборе. Если же частота требуемого аллеля низка, то нужно или искать другой исходный материал, или вводить требуемый аллель из других популяций (сортов и пород).

В экологии — позволяет выявить влияние самых разнообразных факторов на популяции. Дело в том, что, оставаясь фенотипически однородной, популяция может существенно изменять свою генетическую структуру под воздействием ионизирующего излучения, электромагнитных полей и других неблагоприятных факторов. По отклонениям фактических частот генотипов от расчётных величин можно установить эффект действия экологических факторов. (При этом нужно строго соблюдать принцип единственного различия. Пусть изучается влияние содержания тяжелых металлов в почве на генетическую структуру популяций определённого вида растений. Тогда должны сравниваться две популяции, обитающие в крайне сходных условиях. Единственное различие в условиях обитания должно заключаться в различном содержании определённого металла в почве).


 

А также другие работы, которые могут Вас заинтересовать

40063. Алфавит и лексика ИПЯ 56.5 KB
  Задание 1: Дать характеристику алфавита различных ИПЯ ББК УДК Государственного рубрикатора НТИ информационнопоисковых тезаурусов. Таблица 1 Характеристика алфавита ИПЯ Наименование ИПЯ Состав алфавита Виды обозначений Примеры УДК Цифровой Цифры Знак точка Знак двоеточие Знак распространения Знак круглые скобки Знак равенства Знак кавычки Знак стрелка Знак конгруэнтности .412 Технология работы: Проанализировать план выражения лексических единиц входящих в состав основных и вспомогательных таблиц заданных...
40064. Язык как знаковая система 45 KB
  Ознакомиться с видами знаков. Приобрести навыки определения структуры знаков. Рассмотреть сферу применения знаков при создании информационных продуктов.
40065. Парадигматические отношения в ИПЯ 51.5 KB
  Ознакомиться с видами парадигматических отношений. Овладеть практическими навыками распознавания парадигматических отношений в ИПЯ. Перечень лексических единиц Месяц декабрь Искусственный язык специализированный язык Танец народный танец Библиографическая запись поле данных Самолет фюзеляж Алфавит ИПЯ знак Год месяц...
40066. Синтагматические отношения в ИПЯ 54.5 KB
  Ознакомиться с видами грамматических средств в ИПЯ. Овладеть навыками практического использования грамматических средств в ИПЯ. № документа Поисковый образ документа в индексах ИПЯ УДК ББК таблицы для областных библиотек ГРНТИ 1 16075.
40067. Создание лексико-семантической основы ИПЯ. Часть 1. Отбор и нормализация лексики 49 KB
  Требования к отчету: Итоги выполнения задания представить в виде таблицы 1 Таблица 1 Способы достижения однозначности лексических единиц в ИПЯ Наименование ИПЯ Наименование элемента организационной структуры Устранение синонимии Устранение многозначности 1. Выявить все использованные в заданном ИПЯ ссылки для устранения синонимии: см. Привести примеры использования в заданном ИПЯ различных способов устранения полисемии и омонимии: развертывание слова до словосочетания и лексикографический способ.
40068. Создание лексико-семантической основы ИПЯ. Часть 2. Систематизация лексических единиц. Построение классификационной схемы понятий 38 KB
  Построение классификационной схемы понятий Цель работы: Освоить методы систематизации лексических единиц. Овладеть правилами деления объема понятий; 2. Технология работы: Найти в словаре определения заданных понятий и проанализировать их с точки зрения указания в дефиниции на родовое делимое понятие. Требования к отчету: Итоги выполнения задания представить в виде классификационной схемы понятий: Системы классификации Комбинационные Перечислительные УДК ББК...
40069. Лингвистическое обеспечение сайтов 40 KB
  Сформировать умения определять состав лингвистического обеспечения сайтов. Задание 1: Проанализировать состав ИПЯ используемых для подготовки информационных продуктов и услуг информационных учреждений. Таблица 1 Состав ИПЯ используемых для подготовки информационных продуктов и услуг Наименование информационного продукта или услуги Наименование используемых ИПЯ Назначение функция ИПЯ 1 2 3 Технология работы: Проанализируйте структуру сайта заданного информационного учреждения...
40070. Объектно-признаковый язык 55 KB
  Таблица 1 Виды фактографической информации Лексическая единица Вид информации фактическая прогнозная количественная качественная Технология работы: Проанализировать лексическую единицу см. По результатам тематического поиска в базе данных Дипломные работы отобрано 34 документа; 4. Таблица 2 – Типы лексических единиц Лексическая единица Тип лексической единицы Кемеровский государственный университет культуры и искусств номенклатурный знак Технология работы: Проанализировать...
40071. Государственный рубрикатор научно-технической информации как ИПЯ 48.5 KB
  Охарактеризовать ГРНТИ как ИПЯ. Овладеть навыками кодирования с помощью ГРНТИ. Определить сферу применения ГРНТИ.