30323

Физико-химические основы технологических процессов

Доклад

Иностранные языки, филология и лингвистика

Физикохимические основы технологических процессов Этилбензол на нефтехимических предприятиях Украины и в ведущих капиталистических странах получают по каталитической реакции алкилирования бензола этиленом: С6Н6 С2Н4→С6Н5СН2СН3 2 Реакция алкилирования бензола этиленом можно классифицировать как: по зоне протекания химической реакции гетерогенная ; по использованию в ходе реакции катализатора...

Русский

2013-08-24

59.5 KB

9 чел.

1.1.2.Физико-химические основы технологических процессов

Этилбензол на нефтехимических предприятиях Украины и в ведущих капиталистических странах получают по каталитической реакции алкилирования бензола этиленом:

                                       С6Н6 + С2Н4→С6Н5СН2-СН3                                   …(2)

Реакция алкилирования бензола этиленом можно классифицировать как:

-по зоне протекания химической реакции- гетерогенная ;

-по использованию в ходе реакции катализатора- гетеро-каталитическая;

-по характеру протекания- простая;

-по механизму протекания- электрофильного замещения;

-по физическим параметрам проведения- высокотемпературная, осуществляемая при среднем давлении;

-по тепловому эффекту- экзотермическая.

  Побочными продуктами этой реакции являются полиэтилбензолы, от которых целевой товар отделяют при помощи дистилляции:

                                 С6Н6 + 2СН2=СН2→С6Н42Н5)2                            …  (3)

                               С6Н6 + 3СН2=СН2→С6Н32Н5)3                                …(4)

Зависимость скорости реакции  представлена в следующем виде:

            r=d[ArR]/dτ= k1 k2[ArH][R+][B]/ (k-1+ k2[B])                             …(5)

Скорость алкилирования зависит от многих факторов, следовательно, возможны различные предельные случаи:

  •  Распад σ-комплексана исходные компоненты протекает значительномедленнее, чем отрыв протона; тогда k2[B]>>k-1 и величиной  k-1 в знаменателе можно пренебречь. В этом случае выражение 4  преобразуется в    r=[ArH][R+][B], т.е. реакция имеет второй порядок и концентрация основания не влияет на ее скорость.
  •  Если  k-1>> k2[B], то r=( k1 k2/ k-1) [ArH][R+][B],т.е. реакция имеет третий порядок и ее скорость зависит от концентрации основания.
  •  Если k-1 k2[B] >k1, то скорость реакции описывается выражением 4 и нелинейно зависит от концентрации основания.
  •  Если k1k-1> k2[B], то скорость реакции зависит от  концентрации основания и находящегося в избытке исходного реагента.

   Алкилирование этиленом протекает в присутствии безводного HCl с образованием активного комплекса:

                                 …(6)

Механизм реакции алкилирования предполагает, что сначала алкилгалогенид и катализатор образуют реагент (быстрая стадия), представляющий собой комплекс с переносом заряда (I) или ионную пару (II), который затем реагирует с ареном (медленная стадия), давая соединение III; перенос протона к растворителю приводит к продукту реакции. При проведении процесса без растворителя или в слабоосновном растворителе III - конечный продукт алкилирования, он распадается лишь при разложении реакционной массы:

…(7)

   При алкилировании в качестве катализаторов используют кислоты Льюиса, протонные кислоты, кислотные оксиды, а также катионообменные смолы.

 В промышленности в качестве катализатора чаще всего используется А1С13, это объясняется тем, что последний позволяет проводить реакции алкилирования и диспропорционирования при низких температурах с высокими скоростями по отдельным стадиям. При этом процесс реализуется при использовании прочих технологических схем, в должной мере отработан и допускает создание агрегатов большой единичной мощности.           Процесс алкилирования бензола олефинами, катализируемый комплексом на основе А1С1з является жидкофазным и протекает с выделением тепла.

         Хлорид алюминия в твердом виде практически не растворим в углеводородах и слабо катализирует реакцию. Однако по мере выделения НС1 хлорид алюминия начинает превращаться в темное жидкое вещество, также не растворимое в избытке углеводорода. Этот комплекс Густавсона обладает высокой каталитической активностью, и реакция постепенно ускоряется. Его можно приготовить, пропуская НС1 при нагревании через суспензию А1С1з в ароматическом углеводороде. Комплекс представляет собой соединение А1С1з и НС1 с 1—6 молекулами ароматического углеводорода, одна из которых находится в особом структурном состоянии положительно заряженного иона (σ-комплекс), а остальные образуют сольватную оболочку А12С17.

В настоящее время известны следующие гетерогенные катализаторы алкилирования бензола пропиленом: фосфорнокислотный, катализаторы на основе оксидов и солей металлов, оксиды, модифицированные ВРз, аморфные алюмосиликаты, цеолиты и катеониты.

                               ВF3* Н2О↔Н+[ ВF3ОН]¯                                               …(8)

При использование ВF3 не наблюдается промежуточных π- и σ-комплексов. При взаимодействии с олефинами образуются эфироподобные комплексы:         

                                                                                     σ+        σ-

                              ВF3 ·Н2О↔ Н+[ ВF3ОН]¯→СН3−СН…   ВF3ОН     …(9)

                                                                              СН3

Процесс с Н2SО4 и НF3 проводят в жидкой фазе при 10—40°С и 0,1—1,0 МПа. Образование комплексов и механизм реакции в присутствии Н2SО4 протекает следующим образом:

                СН2=СН2 + Н2SО4 →[ −СН3−СН2 ]+ + НSО4¯       …(10)

                 С6Н6 + НSО4¯ →[ С6Н5]¯ + Н2SО4                                      …(11)

                    [ С6Н5]¯ + [ −СН3−СН2 ]+ С6Н5С2Н5                        …(12)

Таким образом реакция алкилирования протекает по сложному многомаршрутному механизму.

Образование комплексов при реакции алкилирования ароматических углеводородов олефинами в присутствии сильных протонсодержащих кислот может быть представлено в упрощенном виде следующим образом:

         2Н3Р04→ Н2Р04 + Н4Р04 +                                  … (13)

        С2Н4 + Н4Р04۬ С2Н5 + + Н3Р04                             …(14)

       С6Н6 + С2Н5 + → С6Н5С2Н5  +                         …(15)

       Н2Р04¯ +Н۬Н3Р04                                                                         …(16)

Процесс с Н3Р04 проходит в газовой фазе при 225—275°С и 2—6 МПа, с алюмосиликатами и цеолитами — в жидкой или газовой фазе при 200—400°С и таком же давлении. Твердый фосфорно-кислотный катализатор имел одно время широкое распространение при алкилировании. Теперь же все большее внимание уделяется гетерогенным катализаторам (ВF3), что обеспечивает большую селективность по целевому продукту и уменьшение выброса вредных веществ.

  


 

А также другие работы, которые могут Вас заинтересовать

84539. Характеристика періодів і фаз СЦ 47.19 KB
  Починається скорочення передсердя з мязевих пучків які охоплюють гирла вен; це попереджує рух крові по градієнту тиску із передсердя в вени так як клапани тут відсутні. і внаслідок цього в шлуночок надходить остання порція крові яка складає від 8 до 30 від всього обєму крові що надходить в шлуночок при його діастолі. Тому напруження міокарду шлуночка і тиск в ньому не змінюється не відбувається рух крові через порожнини серця; не змінюється положення клапанів. В стані спокою в шлуночку знаходиться близько 150 мл крові.
84540. Показники насосної функції серця і методи іх дослідження 42.01 KB
  Цей показник можна визначити за допомогою ехокардіографії тетраполярної реографії не інвазивні методи за допомогою методу розведення барвника внутрішньовенно вводять певні барвники і по динаміці зміни її концентрації в крові розраховують ХОК а також за допомогою методу Фіка він заснований на визначенні хвилинного поглинання кисню організмом людини і на визначенні артеріовенозної різниці вмісту кисню; для визначення а в різниці необхідно провести зондування правого передсердя для отримання змішаної венозної крові; далі розрахунок...
84541. Роль клапанів серця у гемодинаміці. Тони серця, механізми їх походження ФКГ, її аналіз 42.92 KB
  Клапани розташовані при вході та при виході обох шлуночків серця. Мітральний та трьохстулковий клапани перешкоджають зворотньому закиду крові регургітації крові в передсердя під час систоли шлуночків. Перший систолічний тон виникає на початку систоли шлуночків. Його формують такі компоненти: закриття стулок передсердношлуночкового клапану; це основний компонент першого тону дає осциляції найбільшої висоти виникає на межі фаз ізометричного та асинхронного скорочень; міокардіальний компонент повязаний із напруженням та вібрацією...
84542. Артеріальний пульс, його походження СФГ, її аналіз 43.09 KB
  При аналізі СФГ враховують перш за все стан стінок крупних артеріальних судин. Про це можна судити за конфігурацією СФГ вираженості окремих її хвиль. Розрахунок тривалості серцевого циклу проводять по полікардіограмі синхронно зареєстровані ЕКГ ФКГ СФГ.
84543. Регуляція діяльності серця. Міогенні та місцеві нервові механізми регуляції діяльності серця 40.8 KB
  Міогенні та місцеві нервові механізми регуляції діяльності серця. Баланс притоку та відтоку крові притік крові до серця по венозних судинах; відтік за рахунок активного вигнання крові шлуночками серця; 2. Рівний хвилинний обєм крові ХОК правого та лівого відділів серця; 3.
84544. Місцеві міогенні механізми регуляції серцевої діяльності 48.71 KB
  Залежність ССС від вихідної довжини КМЦ. Залежність ССС від опору вигнанню рівня артеріального тиску. Залежність ССС від ЧСС. Тому суть цього механізму можна викласти так: чим більше крові притікає до серця під час діастоли тим більша вихідна довжина КМЦ тим більша ССС СО.
84545. Характер і механізми впливів симпатичних нервів на діяльність серця. Роль симпатичних рефлексів в регуляції серцевої діяльності 44.58 KB
  Характер впливів симпатичної нервової системи на серце: позитивний інотропний вплив посилює силу серцевих скорочень; позитивний хронотропний вплив посилює ЧСС; позитивний дромотропний вплив посилює швидкість проведення збудження по елементам провідної системи серця особливо по передсердношлуночковому вузлу структурам провідної системи шлуночків; позитивний батмотропний вплив збільшення збудливості. Медіатор норадреналін взаємодіє переважно з βадренорецепторами оскільки αадренорецепторів тут майже немає при цьому...
84546. Характер і механізми впливів парасимпатичних нервів на діяльність серця. Роль парасимпатичних рефлексів в регуляції серцевої діяльності 44.78 KB
  Механізм впливів блукаючого нерва на серце повязаний із дією медіатора ацетилхоліну на мхолінорецептори КМЦ типових і атипових. В результаті підвищується проникність мембран КМЦ для йонів калію посилення виходу йонів із клітини за градієнтом концентрації що в свою чергу веде до: розвитку гіперполяризації мембран КМЦ; найбільше цей ефект виражений в клітинах з низьким вихідним рівнем мембранного потенціалу найбільше в вузлах АКМЦ: пазуховопередсердному та передсердношлуночковому де МПС = 60мВ; менше в КМЦ передсердь; найменше ...
84547. Гуморальна регуляція діяльності серця. Залежність діяльності серця від зміни йонного складу крові 44.41 KB
  Залежність діяльності серця від зміни концентрації йонів в плазмі крові. Найбільше клінічне значення має вплив йонів калію. При гіпокаліємії зниження концентрації йонів калію в плазмі крові нижче 1ммоль л розвиваються різноманітні електрофізіологічні зміни в КМЦ. Характер змін в КМЦ залежить від того що переважає: втрата йонів калію клітинами чи міжклітинною рідиною.