3036

Расчет гомогенизатора

Лабораторная работа

Производство и промышленные технологии

Расчет гомогенизатора Цель работы: изучение теоретических основ процесса гомогенизации, знакомство с классификацией гомогенизаторов, изучение устройства и принципа действия плунжерного гомогенизатора и приобретение практических навыков по расчету пл...

Русский

2012-10-23

138.29 KB

110 чел.

Расчет гомогенизатора

Цель работы: изучение теоретических основ процесса гомогенизации, знакомство с классификацией гомогенизаторов, изучение устройства и принципа действия плунжерного гомогенизатора и приобретение практических навыков по расчету плунжерных гомогенизаторов.

Теоретические сведения

Гомогенизацией называется процесс измельчения жидких и пюреобразных пищевых продуктов за счет пропускания под большим давлением с высокой скоростью через узкие кольцевые щели. В результате воздействия на продукт различных гидродинамических факторов происходит дробление твердых частиц продуктов и их интенсивная механическая обработка. Гомогенизация не только изменяет дисперсность белковых компонентов продукта, но и влияет на физико-химические свойства продукта (плотность, вязкость).

Гомогенизаторы подразделяются на клапанные, дисковые или центробежные и ультразвуковые. Основным фактором, определяющим конструкцию гомогенизаторов, является количество плунжеров. По этому признаку выпускаемые гомогенизаторы можно разделить на одно-, трех- и пятиплунжерные.

Наибольшее распространение получили клапанные гомогенизаторы, основными узлами которых являются насос высокого давления и гомогенизирующая головка.

Гомогенизатор (рисунок. 3.3) включает в себя станину, корпус, привод, кривошипно-шатунный механизм, плунжерный блок, двухступенчатую гомогенизирующую головку, манометрическое устройство, предохранительный клапан системы смазки и охлаждения.

1 – станина; 2 – корпус; 3 – плунжерный блок; 4 – гомогенизирующая головка;  5 – система охлаждения; 6 – система смазки; 7 – привод; 8 – кривошипно-шатунный механизм

         Рисунок 3.3 – Гомогенизатор

          Внутри станины установлен электродвигатель на плите, которая меняет свое положение за счет поворота относительно оси, закрепленной с одной стороны плиты. Станина имеет четыре регулируемые ножки с подкладками. Сверху на ней укреплен корпус, в котором помещаются кривошипно-шатунный механизм, система охлаждения, фильтр системы смазки. Корпус выполнен в виде резервуара с наклонным дном для стекания масла. Уровень масла в нем должен находиться на такой высоте, чтобы кривошипно-шатунный механизм своей большой головкой мог доставать его при вращении коленчатого вала и разбрызгивать в направлении ползунной группы.

Кривошипно-шатунный механизм преобразует вращательное движение, в возвратно-поступательное движение плунжеров. На его коленчатом валу установлены ведомый шкив и шатуны. Вал вращается в конических подшипниках, наружные кольца которых поджаты крышками.

Система охлаждения состоит из патрубков для подвода и отвода воды, трубчатого змеевика, на дне корпуса, и трубки с отверстиями, установленной над плунжерами. Воду подводят через входные патрубки и подают к плунжерам. Часть воды в змеевике, охлаждает масло и отводится из гомогенизатора.

Производительность гомогенизатора регулируется частотой вращения электродвигателя и коленчатого вала с разным эксцентриситетом кривошипа.

Основными рабочими органами гомогенизирующей головки являются седло и клапан, от конструкции которых зависит степень дисперсности частиц при гомогенизации. Клапанная щель может быть гладкой и волнообразной с постоянным или переменным сечением. Для преодоления сопротивления при прохождении через узкую щель продукт подается под большим давлением (до 20 МПа). Сила, прилагаемая при подаче продукта, поднимает клапан, и между ним и седлом образуется узкий канал, через который протекает жидкость. Клапан остается над седлом в плавающем состоянии, и вследствие изменения гидродинамических условий высота канала постоянно меняется.

Сила, с которой клапан прижимается к седлу, создается часто пружиной, в некоторых конструкциях – маслом под давлением, и может регулироваться. Она определяется давлением, с которым осуществляется подача продукта.

Тонкость измельчения зависит от давления, конструкции гомогенизирующей головки, равномерности подачи, состояния и предварительной обработки продукта. По типу гомогенизирующей головки гомогенизаторы можно подразделить на одно-, двух- и многоступенчатые. Гомогенизирующая головка является узлом гомогенизатора, где непосредственно происходит диспергирование обрабатываемой среды.

Двухступенчатая головка (рисунок 3.4) состоит из корпуса 3 и клапанного устройства, основными частями которого являются седло клапана 1 и клапан 2. Клапан связан со штоком, на выступ которого давит пружина 6. Сила сжатия пружины регулируется путем перемещения накидной гайки 5 со штурвалом, которая вместе с пружиной, штоком 7 и стаканом 8 образуют нажимное устройство 4. Жидкость, нагнетаемая насосом под тарелку клапана, давит на тарелку и отодвигает клапан от седла, преодолевая сопротивление пружины. В образующуюся между клапаном и седлом щель высотой от 0,05 до 2,50 мм проходит с большой скоростью жидкость, гомогенизируясь при этом.

Методика расчета

Исходные данные:

Диаметр плунжера D=32 мм;

Ход плунжера S=60 мм;

Угловая скорость вращения коленчатого вала ω=38,3 рад/с;

Число плунжеров z=3 шт;

Давление гомогенизации р = 19,9 МПа;

Марка гомогенизатора – А1 – ОГМ

Производительность плунжерного гомогенизатора , м3/с,

,

где и диаметр и ход плунжера, м;

угловая скорость вращения коленвала, рад/с;

I – первая ступень; II – вторая ступень; 1 – седло клапана; 2 – клапан; 3 – корпус; 4 – нажимное устройство; 5 – накидная гайка; 6 – пружина; 7 – шток; 8 – стакан

Рисунок 3.4 – Гомогенизирующая головка

число плунжеров, шт.;

КПД насоса ( 0,80 ... 0,90).

G=0,25=1,5 м3

Мощность электродвигателя гомогенизатора , кВт,

,

где давление гомогенизации, Па;

КПД гомогенизатора ( 0,75 ... 0,85).

N=1,519,9/36000,75=0,011 кВт

Толщина тарелки клапана , м,

,

где давление гомогенизации, Па;

2,4∙108 Па – допускаемое напряжение для материала клапана;

диаметр клапана, м,

;

где производительность гомогенизатора, м3/с;

допускаемая скорость жидкости в седле, м/с (для всасывающего клапана 2 м/с, а для нагнетательного 5 ... 8 м/с);

площадь сечения хвостовика, м2,

,

здесь радиус хвостовика, м, (4 ... 5)∙10-3 м.

-3=0,0157 м2

dkл==2,39 м

hкл=0,437=2965,2 м

Пружину нагнетательного клапана рассчитывают, исходя из необходимого усилия при закрытом клапане

,

где производительность гомогенизатора, м3/с;

угловая скорость вращения коленчатого вала, рад/с;

масса клапана, кг ( 0,4 кг);

отношение радиуса кривошипа к длине шатуна ( 0,15 ... 0,20);

диаметр клапана, м;

число плунжеров, шт.

 

Pпр=1,523=0,115 Н

Сила сжатия пружины при рабочей деформации , Н,

.

Рд=1,50,0115=0,175 Н

Жесткость пружины , Н/м,

,

где высота пружины, м ( 0,10 ... 0,14 м).

Ж=(0,175 – 0,115)/0,14=0,41 Н/м

При гомогенизации часть механической энергии превращается в теплоту, вследствие чего происходит повышение температуры гомогенизируемого продукта , К,

,

где давление гомогенизации, Па;

3880 Дж/(кг-К) – удельная теплоемкость молока;

1033 кг/м3 – плотность молока, кг/м3.

t=19,9/38801033=4,965 К

Средний диаметр жировых шариков, м, в диапазоне изменения давления от 2,0 до 20,0 МПа определяется по формуле Н.В. Барановского

,

где давление гомогенизации, МПа.

d=3,86/6 =0,085 м

Расчет предохранительных клапанов можно свести к определению проходного сечения седла клапана с учетом вязкости обрабатываемой жидкости. Для маловязких жидкостей (молоко, соки) диаметр, м, проходного сечения седла определяется по формуле

,

где давление всасывания, МПа ( 0,2∙106 МПа);

отношение массы перекачиваемой жидкости к массе воды (для молока 1,03).

Dc= = 0,019 м


 

А также другие работы, которые могут Вас заинтересовать

66848. Преобразование входных ресурсов в выходной продукт 180 KB
  Основой работы менеджера является управление преобразованием ресурсов (входов) в товары и услуги (выходы), которые, в свою очередь, приводят к конечным результатам деятельности предприятия. Базовую модель преобразования можно представить в виде схемы входа-выхода, рисунок 1.
66849. ИМЯ СУЩЕСТВИТЕЛЬНОЕ (THE NOUN) 252.5 KB
  Именем существительным называется часть речи, которая обозначает предмет. Предметом о грамматике называют все то, о чем можно спросить: who is this? кто это? или what is this? что это? Например: who is this? кто это?...
66850. ДЕЙСТВИТЕЛЬНЫЙ ЗАЛОГ (THE ACTIVE VOICE) 215 KB
  Для выражения времени совершения действия — настоящего, прошедшего и будущего — английский глагол имеет своеобразную систему глагольных времен (Tenses). Глагольные времена делятся на четыре группы;...
66851. Местоимения it, that 118 KB
  It is a new subject. It is very important for our future speciality. We shall study it for two years. 3. It is known that the knowledge of general engineering subjects is the basis for the study of special subjects. 4. It is said that the chemistry laboratory of our institute is good.
66852. Методы, техника и технология социологического исследования 140.5 KB
  Виды и типы анкетных вопросов: 1 по содержанию вопросы о фактах сознания отношения поведения личности респондента; 2 по форме открытые закрытые полузакрытые прямые и косвенные; 3 по методической функции основные и неосновные вопросы-фильтры вопросы-ловушки и др.
66853. Инженерная геодезия 308.5 KB
  Основная задача инженерно-геодезических изысканий при проектировании сооружений линейного типа сводится к определению на местности оси сооружения (трассы) в плане и по высоте. Рассмотрим порядок наиболее типичной программы геодезических работ применительно к дорожным изысканиям.