3036

Расчет гомогенизатора

Лабораторная работа

Производство и промышленные технологии

Расчет гомогенизатора Цель работы: изучение теоретических основ процесса гомогенизации, знакомство с классификацией гомогенизаторов, изучение устройства и принципа действия плунжерного гомогенизатора и приобретение практических навыков по расчету пл...

Русский

2012-10-23

138.29 KB

110 чел.

Расчет гомогенизатора

Цель работы: изучение теоретических основ процесса гомогенизации, знакомство с классификацией гомогенизаторов, изучение устройства и принципа действия плунжерного гомогенизатора и приобретение практических навыков по расчету плунжерных гомогенизаторов.

Теоретические сведения

Гомогенизацией называется процесс измельчения жидких и пюреобразных пищевых продуктов за счет пропускания под большим давлением с высокой скоростью через узкие кольцевые щели. В результате воздействия на продукт различных гидродинамических факторов происходит дробление твердых частиц продуктов и их интенсивная механическая обработка. Гомогенизация не только изменяет дисперсность белковых компонентов продукта, но и влияет на физико-химические свойства продукта (плотность, вязкость).

Гомогенизаторы подразделяются на клапанные, дисковые или центробежные и ультразвуковые. Основным фактором, определяющим конструкцию гомогенизаторов, является количество плунжеров. По этому признаку выпускаемые гомогенизаторы можно разделить на одно-, трех- и пятиплунжерные.

Наибольшее распространение получили клапанные гомогенизаторы, основными узлами которых являются насос высокого давления и гомогенизирующая головка.

Гомогенизатор (рисунок. 3.3) включает в себя станину, корпус, привод, кривошипно-шатунный механизм, плунжерный блок, двухступенчатую гомогенизирующую головку, манометрическое устройство, предохранительный клапан системы смазки и охлаждения.

1 – станина; 2 – корпус; 3 – плунжерный блок; 4 – гомогенизирующая головка;  5 – система охлаждения; 6 – система смазки; 7 – привод; 8 – кривошипно-шатунный механизм

         Рисунок 3.3 – Гомогенизатор

          Внутри станины установлен электродвигатель на плите, которая меняет свое положение за счет поворота относительно оси, закрепленной с одной стороны плиты. Станина имеет четыре регулируемые ножки с подкладками. Сверху на ней укреплен корпус, в котором помещаются кривошипно-шатунный механизм, система охлаждения, фильтр системы смазки. Корпус выполнен в виде резервуара с наклонным дном для стекания масла. Уровень масла в нем должен находиться на такой высоте, чтобы кривошипно-шатунный механизм своей большой головкой мог доставать его при вращении коленчатого вала и разбрызгивать в направлении ползунной группы.

Кривошипно-шатунный механизм преобразует вращательное движение, в возвратно-поступательное движение плунжеров. На его коленчатом валу установлены ведомый шкив и шатуны. Вал вращается в конических подшипниках, наружные кольца которых поджаты крышками.

Система охлаждения состоит из патрубков для подвода и отвода воды, трубчатого змеевика, на дне корпуса, и трубки с отверстиями, установленной над плунжерами. Воду подводят через входные патрубки и подают к плунжерам. Часть воды в змеевике, охлаждает масло и отводится из гомогенизатора.

Производительность гомогенизатора регулируется частотой вращения электродвигателя и коленчатого вала с разным эксцентриситетом кривошипа.

Основными рабочими органами гомогенизирующей головки являются седло и клапан, от конструкции которых зависит степень дисперсности частиц при гомогенизации. Клапанная щель может быть гладкой и волнообразной с постоянным или переменным сечением. Для преодоления сопротивления при прохождении через узкую щель продукт подается под большим давлением (до 20 МПа). Сила, прилагаемая при подаче продукта, поднимает клапан, и между ним и седлом образуется узкий канал, через который протекает жидкость. Клапан остается над седлом в плавающем состоянии, и вследствие изменения гидродинамических условий высота канала постоянно меняется.

Сила, с которой клапан прижимается к седлу, создается часто пружиной, в некоторых конструкциях – маслом под давлением, и может регулироваться. Она определяется давлением, с которым осуществляется подача продукта.

Тонкость измельчения зависит от давления, конструкции гомогенизирующей головки, равномерности подачи, состояния и предварительной обработки продукта. По типу гомогенизирующей головки гомогенизаторы можно подразделить на одно-, двух- и многоступенчатые. Гомогенизирующая головка является узлом гомогенизатора, где непосредственно происходит диспергирование обрабатываемой среды.

Двухступенчатая головка (рисунок 3.4) состоит из корпуса 3 и клапанного устройства, основными частями которого являются седло клапана 1 и клапан 2. Клапан связан со штоком, на выступ которого давит пружина 6. Сила сжатия пружины регулируется путем перемещения накидной гайки 5 со штурвалом, которая вместе с пружиной, штоком 7 и стаканом 8 образуют нажимное устройство 4. Жидкость, нагнетаемая насосом под тарелку клапана, давит на тарелку и отодвигает клапан от седла, преодолевая сопротивление пружины. В образующуюся между клапаном и седлом щель высотой от 0,05 до 2,50 мм проходит с большой скоростью жидкость, гомогенизируясь при этом.

Методика расчета

Исходные данные:

Диаметр плунжера D=32 мм;

Ход плунжера S=60 мм;

Угловая скорость вращения коленчатого вала ω=38,3 рад/с;

Число плунжеров z=3 шт;

Давление гомогенизации р = 19,9 МПа;

Марка гомогенизатора – А1 – ОГМ

Производительность плунжерного гомогенизатора , м3/с,

,

где и диаметр и ход плунжера, м;

угловая скорость вращения коленвала, рад/с;

I – первая ступень; II – вторая ступень; 1 – седло клапана; 2 – клапан; 3 – корпус; 4 – нажимное устройство; 5 – накидная гайка; 6 – пружина; 7 – шток; 8 – стакан

Рисунок 3.4 – Гомогенизирующая головка

число плунжеров, шт.;

КПД насоса ( 0,80 ... 0,90).

G=0,25=1,5 м3

Мощность электродвигателя гомогенизатора , кВт,

,

где давление гомогенизации, Па;

КПД гомогенизатора ( 0,75 ... 0,85).

N=1,519,9/36000,75=0,011 кВт

Толщина тарелки клапана , м,

,

где давление гомогенизации, Па;

2,4∙108 Па – допускаемое напряжение для материала клапана;

диаметр клапана, м,

;

где производительность гомогенизатора, м3/с;

допускаемая скорость жидкости в седле, м/с (для всасывающего клапана 2 м/с, а для нагнетательного 5 ... 8 м/с);

площадь сечения хвостовика, м2,

,

здесь радиус хвостовика, м, (4 ... 5)∙10-3 м.

-3=0,0157 м2

dkл==2,39 м

hкл=0,437=2965,2 м

Пружину нагнетательного клапана рассчитывают, исходя из необходимого усилия при закрытом клапане

,

где производительность гомогенизатора, м3/с;

угловая скорость вращения коленчатого вала, рад/с;

масса клапана, кг ( 0,4 кг);

отношение радиуса кривошипа к длине шатуна ( 0,15 ... 0,20);

диаметр клапана, м;

число плунжеров, шт.

 

Pпр=1,523=0,115 Н

Сила сжатия пружины при рабочей деформации , Н,

.

Рд=1,50,0115=0,175 Н

Жесткость пружины , Н/м,

,

где высота пружины, м ( 0,10 ... 0,14 м).

Ж=(0,175 – 0,115)/0,14=0,41 Н/м

При гомогенизации часть механической энергии превращается в теплоту, вследствие чего происходит повышение температуры гомогенизируемого продукта , К,

,

где давление гомогенизации, Па;

3880 Дж/(кг-К) – удельная теплоемкость молока;

1033 кг/м3 – плотность молока, кг/м3.

t=19,9/38801033=4,965 К

Средний диаметр жировых шариков, м, в диапазоне изменения давления от 2,0 до 20,0 МПа определяется по формуле Н.В. Барановского

,

где давление гомогенизации, МПа.

d=3,86/6 =0,085 м

Расчет предохранительных клапанов можно свести к определению проходного сечения седла клапана с учетом вязкости обрабатываемой жидкости. Для маловязких жидкостей (молоко, соки) диаметр, м, проходного сечения седла определяется по формуле

,

где давление всасывания, МПа ( 0,2∙106 МПа);

отношение массы перекачиваемой жидкости к массе воды (для молока 1,03).

Dc= = 0,019 м


 

А также другие работы, которые могут Вас заинтересовать

45948. Конструкционные стали: классификация, маркировка, химический состав, механические и технологические свойства, применение 50.2 KB
  Конструкционные стали: классификация маркировка химический состав механические и технологические свойства применение. Широкое использование стали в промышленности обусловлено сочетанием комплекса механических физикохимических и технологических свойств. Сталью называются сплавы железа с углеродом и некоторыми другими элементами причем углерода в стали должно содержаться меньше 214 . Постоянными примесями в стали являются: кремний до 04 марганец до 08 сера до 005 фосфор до 005 и газы NOH и др.
45949. Инструментальные стали: классификация, маркировка, свойства, применение 24.34 KB
  Инструментальные стали: классификация маркировка свойства применение. ИНСТРУМЕНТАЛЬНЫЕ СТАЛИ. Инструментальные стали предназначены для изготовления режущего измерительного инструмента и штампов холодного и горячего деформирования. Основные свойства которыми должны обладать инструментальны стали: износостойкость прочность при удовлетворительной вязкости теплостойкость прокаливаемость и хорошая обрабатываемость давлением и резанием.
45950. Статические и динамические испытания металлов: основные механические свойства и их определение 186.98 KB
  В этих испытаниях создаётся однородное напряжённое состояние по сечению образца причём доля нормальных напряжений является преобладающей поэтому эти испытания считаются жёсткими. Машины автоматически фиксируют величины приложенной нагрузки и изменение длины образца в виде диаграммы растяжения по которой производятся все необходимые расчеты. длинные образцы где F0 площадь сечения рабочей части образца. При этом необходимо соблюдать важное условие: заготовки не должны нагреваться до температуры 150С иначе изменится структура и свойства...
45951. Сплавы на основе меди: классификация, маркировка, свойства, применение 21.83 KB
  По техническим свойствам медные сплавы делятся на деформируемыеГОСТ1817578 и литейные ГОСТ61383; по способности к закалке термоупрочняемые и нетермоупрочняемые; по химическому составу на бронзы Cu другие элементы кроме Zn и латуни СuZn и другие элементы. Бронзы маркируются буквами Бр бронза и буквами и цифрами: буквы означают название элемента а цифры его количество в сплаве в процентах. Бронзы имеют более высокие по сравнению с латунями прочностные антифрикционные коррозионостойкие свойства но являются более...
45952. Сплавы на основе алюминия: классификация, маркировка, свойства, применение 16.94 KB
  Сплавы на основе алюминия: классификация маркировка свойства применение. Единой цифровой маркировки алюминиевых сплавов не существует деформируемые литейные и спеченные сплавы маркируются поразному. Деформируемые сплавы имеют буквенную и буквенноцифровую маркировку причем выбор букв и цифр производится случайным образом: сплав lSiCuMg обозначается АВ авиаль сплав lMn обозначается АМц а сплав LMg обозначается АМг. Для группы сплавов первые цифры после букв обозначают соответственно: 1сплавы упрочняемые Сu и Mg...
45953. Теория и технология термической обработки стали: виды, применение 13.64 KB
  Основными видами термической обработки являются: отжиг закалка и отпуск. Отжиг бывает полный неполный диффузионый рекристаллизационный и нормализа Закалка. Закалкавид термической обработки заключающийся в нагреве изделий с контролируемой скоростью1000С час до температуры АС330500С выше линии окончания фазовых переходов GS диаграммы железо углерод выдержке при этойтемпературе для выравнивания температуры по сечению и осуществления фазовых переходов Fe3C Feα Feγ и быстром охлаждении в воде или масле. Закалка бывает обычная...
45954. Пластмассы: состав, структура, классификация, свойства, применение 13.75 KB
  Полиэтилен со степенью полимеризации 20 предет собой жидкость обладающая смазывающими сввами. Полиэтилен со степенью полимеризации 2000 предет собой твердый пластичныйупругий металл испмый для изгния пленок. К не полярным относятся: полиэтилен второпласты орг. Полиэтилен.
45955. Каучук и резина: строение, состав, свойства, методы получения, применение 14.01 KB
  Особенно важным и спецким сввом каучука явлся его эластть упругость способть каучука восстанавливать свою первоначую форму после прекращения действия сил вызвавших деформацию. Резинами наз высоко молекулярный матл редко сетчатые стрры которые получают в резте вулканизации каучука с наполнителями. В состав входят: связующие в виде каучука естеств. сера в колве 13 которая служит для смешивания каучука наполнители в виде порошковой сожи материала ткани или другие волокнакапронмягчители парафин стеориновая кислота...
45956. Химико-термическая обработка стали: виды, технология, оборудование, свойства, применение 187.39 KB
  ХТО - процесс насыщения поверхности детали различными легирующими элементами с целью изменения состава структуры и свойств поверхностного слоя детали. Поверхность детали может насыщаться следующими элементами: углерод азотом хромом кремний алюминий бром. Цель: получить на поверхности детали высокую тв. достаточной вязкости и пластичности сердцевины деталикулачки эксцентрики.