30373

Технические средства САПР и их развитие

Лекция

Информатика, кибернетика и программирование

Рассматриваются архитектуры ЭВМ в зависимости от последовательности обработки данных. Представляются классы ЭВМ в зависимости от множественности одиночности потоков команд и данных ОКОД ОКМД МКМД. Основное назначение лекции дать более глубокие знания по техническому обеспечению САПР: архитектуры ЭВМ в зависимости от последовательности обработки данных и классы ЭВМ в зависимости от множественности одиночности потоков команд и данных 6. Усложнение решаемых задач и вычислительных алгоритмов САПР привело к внедрению в эту область более...

Русский

2013-08-24

139.5 KB

44 чел.

6. Лекция: Технические средства САПР и их развитие (продолжение)

Приводятся высокопроизводительные технические средства САПР. Рассматриваются архитектуры ЭВМ в зависимости от последовательности обработки данных. Представляются классы ЭВМ в зависимости от множественности /одиночности потоков команд и данных (ОКОД, ОКМД, МКМД). Основное назначение лекции — дать более глубокие знания по техническому обеспечению САПР: архитектуры ЭВМ в зависимости от последовательности обработки данных и классы ЭВМ в зависимости от множественности/одиночности потоков команд и данных 

6.1. Высокопроизводительные технические средства САПР и их комплексирование

Рабочие станции (PC) и персональные компьютеры (ПК) имеют традиционную архитектуру, ориентированную на последовательные вычисления, т.е. одним потоком команд они обрабатывают один поток данных. Такая организация вычислений была предложена фон-Нейманом и названа его именем. Усложнение решаемых задач и вычислительных алгоритмов САПР привело к внедрению в эту область более высокопроизводительных ЭВМ, организация вычислений в которых основана на множественности потоков команд, обрабатывающих множество потоков данных. Архитектура этих ЭВМ называется параллельной — "не фон-неймановской". По множественности/одиночности потоков команд и данных ЭВМ можно разделить на четыре класса, но на практике используются ЭВМ трех классов. На рис. 6.1 показаны упрощенные структурные схемы трех классов ЭВМ, включающие в себя следующие блоки: ОЗУ команд (ОЗУк), ОЗУ данных (ОЗУд), устройство управления (УУ), центральный процессор (ЦП), а также потоки команд (К) и потоки данных (Д) [7, 16].

ЭВМ класса ОКОД — это традиционные "фон-неймановские" машины с одиночным потоком команд и одиночным потоком данных. К ним относятся PC и ПК. ОКМД ЭВМ — это параллельные компьютеры с одиночным потоком команд и множественными потоками данных. МКМД ЭВМ — это многопроцессорные ЭВМ с множественными потоками команд и множественными потоками данных.

На рис. 6.1а, б, в показаны также соответствующие трем классам ЭВМ алгоритмы организации вычислений. Стрелками в них обозначены потоки команд и данных, кружками — выполняемые операторы. В случае ОКОД ЭВМ используется обычный последовательный алгоритм вычислений.

Для организации вычислений в ЭВМ класса ОКМД применяется последовательно-групповой алгоритм. В этом случае группе выполняемых операторов соответствуют операции над векторными и матричными данными. ОКМД ЭВМ реализуются в виде векторных и матричных ЭВМ. Поскольку производительность таких машин велика, их называют суперЭВМ.

Матричная супер-ЭВМ представляет собой матрицу одинаковых процессорных элементов с собственными локальными ОЗУ, причем каждый из процессоров матрицы выполняет в каждый момент времени одну и ту же команду над разными элементами векторных (матричных) данных. Недостаток матричных ЭВМ — ограниченное количество процессорных элементов в матрице ограничивает производительность ЭВМ: чем длиннее векторы обрабатываемых данных, тем ниже выигрыш в производительности такой матричной супер-ЭВМ перед обычной ОКОД ЭВМ, называемой скалярной машиной.

От этого недостатка свободны векторные супер-ЭВМ класса ОКМД. В отличие от матричной, векторная супер-ЭВМ имеет один процессор, но его аппаратура разбита на отдельные секции. При этом каждая секция обрабатывает элемент векторных данных за один и тот же такт времени своей логической подфункцией, на которые разбивается общая логическая функция, описывающая работу векторного процессора. Элементы векторов передаются от секции к секции с каждым новым тактом времени, формируя таким образом непрерывный конвейер обработки векторов. Секции конвейера называют его ступенями. Такие векторные конвейерные супер-ЭВМ оказываются тем более производительнее по сравнению со скалярными, чем длиннее обрабатываемые векторы. Существенный недостаток векторных супер-ЭВМ — резкое снижение производительности при нарушении непрерывного потока данных, поступающих на вход конвейера.

Поскольку алгоритм организации вычислений для ОКМД ЭВМ имеет специальный вид — последовательно-групповой. ЭВМ этого класса называют специализированными, так как они достигают своей пиковой производительности лишь на определенного класса задачах. В области САПР такие супер-ЭВМ успешно применяются для формирования реалистичных трехмерных графических изображений и решения ряда задач конструкторского проектирования сложных изделий, где требуется обработка векторов и матриц.


увеличить изображение
Рис. 6.1.  Классификация параллельных ЭВМ: а) ЭВМ класса ОКМД; алгоритм последовательно-групповой, в) ЭВМ класса МКМД; алгоритм параллельный, слабосвязанный

Супер-ЭВМ класса МКМД называют суперскалярными высокопараллельными многопроцессорными системами. Поскольку эти ЭВМ реализуют алгоритм вычислений со слабосвязанными множественными потоками команд и данных общего вида, они являются универсальными и обеспечивают выигрыш в производительности по сравнению со скалярными на большинстве задач, решаемых в области САПР. Супер-ЭВМ этого класса имеют множество процессоров, причем каждый из процессоров обрабатывает свои данные под управлением своего потока команд. Наиболее сложной проблемой для таких супер-ЭВМ является синхронизация обмена данными между задачами, запущенными на нескольких процессорах, и синхронизация ожидания одних запущенных задач (процессов) другими.

Аппаратная связь между процессорами МКМД ЭВМ осуществляется тремя способами:

  •  использование общей шины, соединяющей несколько процессоров;
  •  использование общего многопортового ОЗУ, доступного для всех МП;
  •  использование микросхем коммутации перекрестных связей, осуществляющих переключения информационных связей МП между собой по принципу "каждый с каждым".

При наличии общей шины, соединяющей несколько МП, возникают конфликты между МП за право монопольного обмена по шине, что снижает эффективность такой ЭВМ. Этот недостаток привел к тому, что в настоящее время такой вид связи между МП почти не применяется.

Использование общего многопортового ОЗУ предъявляет очень жесткие требования к устройству управления ОЗУ и к надежности самой памяти. Несмотря на этот недостаток, МКМД супер-ЭВМ с общей многопортовой памятью довольно широко используются в САПР.

Наиболее перспективны многопроцессорные комплексы, в которых отдельные МП соединяются друг с другом с помощью коммутаторов перекрестных связей на основе быстро развивающихся КМОП-переключателей.

Поскольку в параллельных ЭВМ трудно теоретически оценить производительность для решения различного класса задач, их производительность оценивается экспериментально с использованием текстовых пакетов и выражается в миллионах операций с плавающей точкой в секунду — Мфлопс.

Параллельные супер-ЭВМ — это уникальные дорогие компьютеры, поэтому они являются ЭВМ коллективного пользования, работающими под управлением ОС с разделением времени. Они оснащены высокоскоростными адаптерами связи с региональными и глобальными вычислительными сетями и связаны с PC разработчиков РЭС с помощью САПР через сетевые каналы связи.

Промежуточным уровнем технических средств САПР между супер-ЭВМ и PC, ПК выступает ЭВМ среднего класса: типа ЕСЭВМ у нас в стране и ES-9000 за рубежом, — либо супермини-ЭВМ типа "Электроника-82" у нас в стране и VAX, MicroVAX — за рубежом. Эти ЭВМ обладают производительностью выше, чем PC и ПК (свыше 5...10 Мфлопс), требуют существенных эксплуатационных расходов, являются компьютерами коллективного пользования с ОС разделения времени и выполняют функции обслуживания внутренних ЛВС фирм и выхода на глобальные и региональные сети при необходимости ведения расчетов на супер-ЭВМ. В последнее время в связи с использованием САПР средними и мелкими фирмами падает спрос на эти дорогостоящие промежуточные ЭВМ на рынке технических средств САПР. В качестве промежуточных звеньев для предоставления сетевых соединений выступают различного рода PC-серверы.

PC-сервер — это PC с расширенным (по объему или номенклатуре) набором периферийных устройств. В качестве одной из задач в ОС такой станции запускается процесс-сервер-программа, обслуживающая пользователей других PС через сеть, предоставляя им периферию данной PC либо сетевое соединение через региональную сеть с супер-ЭВМ. В соответствии с этим различают файл-серверы (PC с дополнительными ВЗУ), серверы сетевой связи (PC с расширенным набором сетевых адаптеров данной ЛВС с другими — ЭВМ-шлюз), вычислительные серверы (PC с повышенной производительностью) и т. д. Все эти PC, ПК и ЭВМ других классов объединяются (комплексируются) для эффективного использования области САПР вычислительными сетями.

Преимущества такого комплексирования заключаются в расширении функциональных возможностей САПР (каждый пользователь в том или ином подразделении имеет доступ к базам данных и программным средствам в других территориально удаленных подразделениях), в оптимизации распределения нагрузки между различными ЭВМ, в коллективном использовании дорогостоящей графической периферии, в повышении надежности функционирования технических средств САПР.

Существует следующая классификация вычислительных сетей:

  •  по топологии связей: радиальные (звездообразные), магистральные, кольцевые, радиально-кольцевые, древовидные, полные (многосвязные);
  •  по составу ЭВМ: однородные и неоднородные;
  •  по способу передачи данных: сети с коммутацией каналов, сообщений или пакетов;
  •  по способу управления: централизованные (с централизованным управлением) и децентрализованные;
  •  по удаленности узлов: локальные (в пределах здания, ряда зданий), региональные (охватывающие регион, область) и глобальные (охватывающие страны и континенты).

Режимы работы технических средств САПР

Состав технических средств базовых конфигураций САПР различных уровней в значительной степени определяется характером проектных задач. Существует взаимосвязь между классом решаемых задач и режимом использования ЭВМ. Рассмотрим задачи, решаемые в САПР, с целью выделения характеристик, определяющих выбор различных режимов работы ЭВМ.

По характеру вычислительного процесса решаемые задачи можно разделить на две основные группы: задачи, решаемые без участия пользователя, и задачи, в процессе решения которых необходимо участие пользователя.

По сложности вычисления задачи бывают:

  •  первой группы: задачи, на решение которых требуется более нескольких минут; задачи, время счета которых измеряется секундами;
  •  второй группы: время взаимодействия с пользователем соизмеримо с временем счета задачи; время решения велико по сравнению со временем диалога.

По объему информации задачи, решаемые в САПР, можно разделить на монопольно использующие основную память ЭВМ и частично использующие основную память ЭВМ.

Исходя из этой классификации решаемых задач САПР можно выделить следующие необходимые режимы работы технических средств:

  •  однопрограммный режим, при котором решаемой задаче доступны все ресурсы ЭВМ;
  •  мультипрограммный режим с фиксированным количеством задач;при таком режиме ОП ЭВМ делится на фиксированное число разделов, которые определены для выполнения одной задачи в каждом; некоторые внешние устройства (ВУ) могут быть назначены для использования несколькими задачами;
  •  мультипрограммный режим с переменным числом задач, все ресурсы ЭВМ общие.

Режим работы технических средств можно классифицировать по удалению проектировщика от основного компонента технических средств:

  •  местный режим, при котором пользователь работает непосредственно у ЭВМ;
  •  дистанционный режим, при котором часть периферийного оборудования связана с процессором канала связи.

Режим работы технических средств можно классифицировать по степени участия пользователя в процессе решения задач:

  •  пакетный режим, когда пользователь составляет задание на выполнение программы, которое в составе пакета заданий запускается для обработки на ЭВМ. Обработка задач производится по очереди. После решения пользователю требуется проанализировать результаты обработки своего задания и подготовить новый вариант, что замедляет отладку и увеличивает время получения окончательных результатов;
  •  режим разделения времени (РРВ), при котором каждой решаемой задаче поочередно выделяется определенный квант времени работы процессора. Пользователь во время сеанса работы за абонентским пунктом, используя средства системы разделения времени (СРВ), может составить, протранслировать, отредактировать программу и приступить к ее выполнению, непосредственно контролируя происходящий процесс. Степень готовности программы зависит от подготовленности пользователя к работе с СРВ.

От выбора правильного режима использования технических средств САПР зависит эффективность эксплуатации технических средств. Поэтому при создании конкретной САПР определенного уровня необходимо провести четкий анализ решаемых задач.

Пакетный режим обработки информации предпочтительнее для задач с большим временем счета и задач, не требующих вмешательства в процесс решения пользователя.

Режим разделения времени удобнее для задач, время счета у которых соизмеримо со временем отклика пользователя на запрос ЭВМ, а также когда необходимо вмешательство пользователя в процесс решения.

6.3. Вычислительные сети САПР

Эволюция развития комплекса технических средств САПР характеризуется созданием территориально рассредоточенных многомашинных систем сбора, хранения и обработки информации, реализованных в виде вычислительных сетей. Последние, рассредоточенные на небольших территориях предприятий и объединяющие в единую информационную систему автоматизированные рабочие места пользователей, ЭВМ и микро-ЭВМ, графопостроители, терминальные станции и другую специализированную аппаратуру, называют локальными вычислительными сетями (ЛВС). Локальные ВС имеют открытую архитектуру, обеспечивающую возможность подключения к сети любых других ЛВС, в том числе и крупных сетей ЭВМ. Основное достоинство ЛВС — низкая стоимость системы передачи данных.

Локальные вычислительные сети САПР должны обеспечивать: использование режимов пакетной и диалоговой обработки, разделения времени, виртуальной памяти; экономичную обработку информации по принципу "наиболее важные процессы САПР выполняются техническими средствами с развитым программным обеспечением и высокой производительностью, наименее ответственные — на дешевых мини- и микро-ЭВМ"; высокую надежность и достоверность функционирования, высокую производительность; применение разнообразного проблемно-ориентированного ПО, централизованных и локальных БД с необходимым объемом памяти; работу с автоматизированными рабочими местами различного назначения и с другим специализированным оборудованием; централизованную и децентрализованную обработку информации.

Использование ЛВС позволяет создать САПР нового поколения, объединяющие контрольно-измерительные комплексы и места сбора информации с автоматизированными рабочими местами схемотехников, конструкторов, механиков и т. д.

Основное назначение ЛВС — распределение ресурсов ЭВМ (программ, совокупности периферийных устройств, терминалов, памяти) для эффективного решения задач автоматизированного проектирования. Локальные ВС должны иметь надежную, быструю и дешевую систему передачи данных (СПД), а стоимость передачи единицы информации должна быть значительно ниже стоимости обработки единицы информации. Для достижения этого ЛВС как система распределенных ресурсов должна выполняться на основе следующих принципов.

Принцип единых протоколов. Протоколы межмашинной связи в ЛВС предназначены для организации обмена информацией между компонентами сети. Протоколы сети определяют форму сообщения или пакета сообщений (длину, заголовок, знак окончания, дополнительную информацию для повышения достоверности передачи и др.). Все процедуры управления и соответствующие им протоколы едины для всей сети и не зависят ни от типа ЭВМ, подключенных к сети, ни от происходящих в них процессов.

Принцип единой передающей среды. При построении СПД для ЛВС используют активную или пассивную структуру передающей среды.

Активная структура выполняется на основе распределенных усилителей и преобразователей, обеспечивающих передачу информации в параллельном и последовательном кодах. Пассивная структура выполняется на основе пассивного носителя — коаксиального либо плоского кабеля. Она использует преобразователи-усилители одного типа. Это обеспечивает возможность работы либо в параллельном, либо в последовательном коде.

Структура передающей среды может быть реализована с применением либо моноканала, либо многопроводной связи. Более дешевой (для ЛВС — более предпочтительной) является структура с моноканалами, поскольку существенно снижаются издержки на эксплуатацию и прокладку соединений. Моноканалами являются физическая среда, аппаратные и, возможно, программные средства, предназначенные для параллельной передачи одновременно (с точностью до времени распространения сигнала) всем абонентским системам. Моноканал предназначен для коллективного использования большим числом абонентских систем, поэтому должен обладать высокой пропускной способностью передачи информации.

Физическая среда моноканала реализуется посредством волоконнооптических линий связи, коаксиальных или плоских кабелей, скрученных пар проводов и т. д.

Принцип единого метода управления. Протоколы ЛВС могут применять централизованные и децентрализованные формы управления одноузловой структурой моноканала. Принцип единого метода управления проявляется в выборе одной из этих форм, обеспечивающей достаточную надежность работы СПД и максимальную загрузку каналов связи. При этом для определения метода управления следует учитывать структуру соединений, их длину, число абонентов и сложность обработки информации с помощью ресурсов ЛВС.

Для централизованных форм управления характерны обилие служебной информации и приоритетность подключаемых к моноканалу станций. Защита от конфликтов в моноканале реализуется центральной управляющей машиной.

В децентрализованных формах управления, которые допускают одинаковый приоритет всех станций, подключаемых к моноканалу, применяют многоступенчатые тракты защиты от конфликтов. Они учитывают противоречивые требования надежности и максимальной загрузки моноканала.

При использовании в ЛВС нескольких методов управления средой передачи данных существенно увеличивается сложность схемных решений контроллеров, с помощью которых станции ЛВС подключаются к среде передачи данных.

Принцип информационной и программной совместимости предусматривает совместимость операционных систем, программ и систем управления базами данных (СУБД), рассредоточенных в рамках ЛВС.

Особенность этого принципа — возможность адаптации процессов к видам пересылаемой информации и применение единых систем кодирования и контроля информации.

Принцип гибкой модульной организации предусматривает проектирование СПД ЛВС на основе набора гибких конструктивно законченных модулей.

Локальные вычислительные сети классифицируют:

  •  по топологическим признакам: иерархической, кольцевой и звездообразной конфигурации, конфигурации типа "общая шина";
  •  по методам управления ресурсами среды передачи данных: с детерминированным и случайным доступом к моноканалу;
  •  по программному обеспечению: с единой операционной поддержкой и едиными методами теледоступа, ориентированными на конкретную ЛВС и ЛВС с различными наборами тех и других компонентов операционной поддержки;
  •  по методу передачи данных: сети с коммутацией каналов, с коммутацией сообщений и коммутацией пакетов, причем в современных ЛВС характерно использование коммутации пакетов;
  •  по техническому обеспечению: гомогенные и гетерогенные ЛВС.

Первые предусматривают применение в станциях однотипного оборудования, например, только комплексов машинной графики. Вторые дают возможность подключения любых абонентских комплексов — от устройств выдачи конструкторской документации до высокопроизводительных вычислительных комплексов с развитой терминальной сетью.

Анализируя способы реализации технического обеспечения САПР на базе стандартных многоуровневых структур вычислительных центров коллективного пользования и на базе ЛВС, можно сделать следующие выводы. Сетевая архитектура по сравнению со стандартной многоуровневой имеет много преимуществ:

  •  возможность взаимодействия с одного и того же терминала с ресурсами всех рабочих и терминальных машин ЛВС;
  •  обеспечение высокой надежности обработки путем замены вышедшей из строя рабочей машины — резервной;
  •  повышение эффективности функционирования ЭВМ за счет их специализации на выполнение определенных функций хранения и управления данными, геометрического моделирования, подготовки управляющей информации для программного управляемого оборудования и т. д.

6.4. Разработка технического обеспечения САПР

Разработка САПР представляет собой комплекс взаимосвязанных работ по созданию математического, программного, технического, информационного и других видов обеспечения систем, ориентированных на автоматизированное проектирование определенного класса объектов (САПР машиностроения, самолетостроения, БИС, ЭВМ и др.).

В разработке и внедрении САПР принимают участие большие коллективы проектных и конструкторско-технологических организаций, усилия которых координируются группой системных исследователей.

Принципы организации и стадии разработки САПР регламентированы руководящими и методическими материалами, а также государственными стандартами.

Рассмотрим некоторые специфичные аспекты разработки технического обеспечения САПР (ТО САПР). К ТО САПР предъявляются требования возможности организации оперативного взаимодействия проектировщиков с ЭВМ, достаточной производительности вычислительных средств и необходимого объема оперативной памяти для решения задач автоматизированного проектирования за приемлемое время, возможности одновременной работы нескольких пользователей с ресурсами ТО, высокой надежности, приемлемой стоимости и т. п.

Удовлетворение перечисленных требований возможно только путем организации ТО САПР в виде специализированной иерархической вычислительной системы (ВС) или вычислительной сети с развитым периферийным оборудованием, ориентированным на ввод, обработку и выдачу текстовой и графической информации.

Задача разработки ТО САПР заключается в обосновании, расчете и выборе структуры многоуровневого комплекса технических средств (КТС) САПР, ориентированного на решение задач автоматизированного проектирования определенного класса объектов. Построение КТС может осуществляться путем комплексирования как стандартного оборудования (ЭВМ, каналы, дисплеи, устройства внешней памяти и т. д.), так и специально разработанного для КТС САПР (АРМ, графопостроители, кодировщики и т. д.).

Создание многоуровневых КТС предполагает наличие на высшем уровне одной или нескольких ЭВМ большой производительности (типа ЕС ЭВМ старших моделей). Эти ЭВМ предназначены для решения сложных задач проектирования, требующих больших затрат машинного времени и памяти. На низших уровнях иерархии могут находиться ЭВМ средней производительности, а также мини- и микро-ЭВМ, входящие в состав автоматизированных рабочих мест (АРМ) (терминальные ЭВМ). Эти ЭВМ предназначены для решения сравнительно несложных задач проектирования, для управления работой комплекта периферийного оборудования и для организации обмена информацией между различными уровнями КТС.

Для определения структуры КТС и параметров входящих в него компонентов могут служить ограничения: снизу — на число программ N, входящих в состав программного обеспечения САПР; сверху — на среднее время Т реакции КТС на поступившую задачу проектирования; снизу — на объем оперативной памяти для хранения программ проектирования; сверху — на время, необходимое процессору для решения усредненной задачи в однопрограммном режиме, а также по номенклатуре периферийного оборудования КТС САПР.

Комплексы технических средств САПР создаются на базе средств вычислительной техники общего назначения — Единой системы ЭВМ, мини- и микро-ЭВМ различных типов.

Единая система ЭВМ представляет собой совокупность технических средств и программного обеспечения, на основе которых можно создавать вычислительные системы различной конфигурации.

Концепции, заложенные в ЕС ЭВМ (программная совместимость, универсальность, модульный принцип построения технических средств и программного обеспечения), позволяют совершенствовать все компоненты системы. С помощью набора команд ЕС ЭВМ производят операции с фиксированной и плавающей запятыми, десятичные операции и операции с полями переменной длины.

Система программного обеспечения ЕС ЭВМ состоит из операционных систем, пакетов прикладных программ и программ технического обслуживания. Она в пакетном режиме выполняет размещение разногабаритных элементов, трассировку соединений и выпуск конструкторско-технологических документов. Подсистема позволяет проектировать печатные платы с переходными металлизированными отверстиями. Выходными документами подсистемы являются фотооригиналы, сборочный чертеж, таблицы цепей, перечень элементов, спецификация.

Контрольные вопросы и задания

  1.  Что общего имеют рабочая станция (РС) и персональный компьютер (ПК)?
  2.  В чем суть "не фон-неймановской" архитектуры?
  3.  Что представляют собой ЭВМ класса ОКОД?
  4.  Что означает аббревиатура "ОКМД"?
  5.  Поясните работу ЭВМ класса МКМД.
  6.  Что представляет собой РС-сервер?
  7.  На какие группы делятся решаемые задачи по характеру вычислительного процесса?
  8.  Как делятся задачи в зависимости от сложности вычисления?
  9.  Как делятся задачи САПР в зависимости от объема решаемых задач?
  10.  Назовите режимы работы технических средств по степени участия пользователей.
  11.  Поясните основное назначение ЛВС.
  12.  Поясните принцип единых протоколов.
  13.  Что понимается под принципом единой передающей среды?
  14.  Что понимается под активной структурой?
  15.  Что характерно для пассивной структуры?
  16.  Поясните принцип единого метода управления.
  17.  Что предусматривает принцип информационной и программной совместимости?
  18.  Что предусматривает принцип гибкой модульной организации?


 

А также другие работы, которые могут Вас заинтересовать

18325. Стандартизация проектной деятельности: основные стандарты управления проектами; международные и национальные стандарты в области УП 265.5 KB
  Стандартизация проектной деятельности: основные стандарты управления проектами; международные и национальные стандарты в области УП; профессиональные международные и национальные квалификационные стандарты; корпоративные стандарты и нормы. Стандарт Standard образец...
18326. Политика в области качества 618.08 KB
  Политика в области качества Политика в области качества – документ разрабатываемый высшим руководством По требованию документа ИСО 9001 в организации должны быть также разработаны цели в области качества. При этом они могут быть оформлены как один документ Цели в обл
18327. Промышленный маркетинг 1.08 MB
  Промышленный маркетинг 11. Специфика маркетинга промышленных товаров и услуг. Специфика спроса и предложения на промышленных рынках. Характер современной конкурентной среды. Промышленный маркетинг как управление сравнительными конкурентными преимуществами. 1.1. Спец
18328. Проектный анализ. Общие положения 360.93 KB
  Проектный анализ. Общие положения Как известно проект предполагает целенаправленное изменение определенной системы. Таким образом в зависимости от постановки целей и задач а также специфики проекта он оказывает целый комплекс желательных и побочных воздействий на
18329. Разработка концепции проекта 797.07 KB
  Разработка концепции проекта Разработка проекта начинается с того что его инициатор выдвигает идею проекта или формулирует проблему которую необходимо решить а затем формирует самое общее укрупненное видение концепцию достижения целей проекта. То есть он определя...
18330. Технический анализ. Задачи технического анализа 50.77 KB
  Технический анализ Задачи технического анализа Технический анализ это совокупность процедур по разработке оптимальных технических проектных решений. В ходе технического анализа проводятся: Выбор и разработка технологического процесса. Б. Определени
18331. Управление проектами 997 KB
  Управление проектами 1. Проекты и управление проектами. Определения У термина €œпроект€ существует множество трактовок. Прежде всего Проект – это чтолибо что задумывается или планируется на будущее. Слово происходит от латинского €œprojectus брошенный вперед В ...
18332. Финансовый анализ управления проектами 202.16 KB
  Финансовый анализ Финансовый анализ инвестиционного проекта это совокупность приемов методов и процедур оценки его эффективности в течение всего проектного цикла во взаимосвязи с деятельностью предприятия объектом инвестирования. Финансовый анализ отдельного и
18333. Введение в информационную безопасность 98.5 KB
  Введение в информационную безопасность Словосочетание информационная безопасность в разных контекстах может иметь различный смысл. Под информационной безопасностью мы будем понимать защищенность информации и поддерживающей инфраструктуры от случайных или предн...