30380

Математические модели (ММ) на различных иерархических уровнях

Лекция

Информатика, кибернетика и программирование

Лекция: Математические модели ММ на различных иерархических уровнях Приводится иерархия математических моделей как основа блочноиерархического подхода к проектированию радиоэлектронных средств. Рассмотрим важные для функциональных моделей понятия полной модели и макромодели. При переходе к более высокому иерархическому уровню упрощения они основаны на исключении из модели вектора внутренних переменных V. Модели 13.

Русский

2013-08-24

327.5 KB

18 чел.

13. Лекция: Математические модели (ММ) на различных иерархических уровнях

Приводится иерархия математических моделей как основа блочно-иерархического подхода к проектированию радиоэлектронных средств. Назначение лекции — показать основу, базу современного подхода к проектированию РЭС, дать более глубокие сведения о математических моделях, используемых при проектировании РЭС

13.1. Иерархия математических моделей в САПР

Блочно-иерархический подход к проектированию радиоэлектронных средств (РЭС) включает в качестве своей основы иерархию математических моделей. Деление моделей по иерархическим уровням (уровням абстрагирования) происходит по степени детализации описываемых свойств и процессов, протекающих в объекте. При этом на каждом иерархическом уровне используют свои понятия "система" и "элементы". Так, система k-го уровня рассматривается как элемент на соседнем более высоком (k–1)-м уровне абстрагирования.


Рис. 13.1.  Представление структуры объекта

Представим структуру некоторого объекта в виде множества элементов (рис. 13.1) и связей между ними [51].

Выделим в соответствии с блочно-иерархическим подходом в структуре объекта некоторые подмножества элементов и назовем их блоками (на рисунке показаны штриховыми линиями). Пусть состояние каждой связи характеризуется одной фазовой переменной vi, zj или uk. Здесь vi относится к внутренним связям между элементами данного блока, zj и uk относятся к выходам и входам блока соответственно.

Рассмотрим важные для функциональных моделей понятия полной модели и макромодели.

Полная модель блока есть модель, составленная из моделей элементов с учетом межэлементных связей, т. е. модель, описывающая как состояние выходов, так и состояние каждого из элементов блока. Моделями элементов блока А являются уравнения, связывающие входные и выходные переменные:

(13.1)

Полная модель блока есть система уравнений

(13.2)

где V, Z и U — векторы внутренних, выходных и входных фазовых переменных блока.

При большом количестве элементов размерность вектора V и порядок системы уравнений (13.2) становятся чрезмерно большими и требуют упрощения.

При переходе к более высокому иерархическому уровню упрощения они основаны на исключении из модели вектора внутренних переменных V. Полученная модель представляет собой систему уравнений

(13.3)

существенно меньшей размерности, чем полная модель (13.2), и называется макромоделью. Следовательно, макромодель уже не описывает процессы внутри блока, а характеризует только процессы взаимодействия данного блока с другими в составе системы блоков.

Модели (13.2) и (13.3) относятся друг к другу как полная модель и макромодель на п-м уровне иерархии. На более высоком (п–1)-м уровне блок А рассматривается как элемент, и макромодель (13.3) становится моделью элемента А. Следовательно, модели (13.1) и (13.3) относятся друг к другу как модели элементов соседних иерархических уровней. Из моделей типа (13.3) может быть составлена полная модель системы на (п–1)-м уровне.

13.2. Микро-, макро- и метауровни

В зависимости от сложности объекта при его проектировании используют большее или меньшее число уровней абстракции. Объединение уровней, родственных по характеру используемого математического аппарата, приводит к образованию в иерархии функциональных моделей для большинства проектируемых сложных объектов трех укрупненных уровней: микро-, макро- и метауровня.

На микроуровне используют математические модели, описывающие физическое состояние и процессы в сплошных средах. Для моделирования применяют аппарат уравнений математической физики. Примерами таких уравнений служат дифференциальные уравнения в частных производных — уравнения электродинамики, теплопроводности, упругости, газовой динамики. Эти уравнения описывают поля электрического потенциала и температуры в полупроводниковых кристаллах интегральных схем, напряженно-деформированное состояние деталей механических конструкций и т. п.

К типичным фазовым переменным на микроуровне относятся электрические потенциалы, давление, температура, концентрации частиц, плотности токов, механические напряжения и деформации. Независимыми переменными являются время и пространственные координаты. В качестве операторов F и в уравнениях (13.2) фигурируют дифференциальные и интегральные операторы. Уравнения (13.2), дополненные краевыми условиями, составляют ММ объектов на микроуровне. Анализ таких моделей сводится к решению краевых задач математической физики.

На макроуровне производится дискретизация пространств с выделением в качестве элементов отдельных деталей, дискретных электрорадиоэлементов, участков полупроводниковых кристаллов. При этом из числа независимых переменных исключают пространственные координаты. Функциональные модели на макроуровне представляют собой системы алгебраических или обыкновенных дифференциальных уравнений. Для их получения и решения используют соответствующие численные методы. В качестве фазовых переменных фигурируют электрические напряжения, токи, силы, скорости, температуры, расходы и т. д. Они характеризуют проявления внешних свойств элементов при их взаимодействии между собой и внешней средой в электронных схемах или механических конструкциях.

На метауровне с помощью дальнейшего абстрагирования от характера физических процессов удается получить приемлемое по сложности описание информационных процессов, протекающих в проектируемых объектах. На метауровне для моделирования аналоговой РЭС широко применяют аппарат анализа систем автоматического управления, а для моделирования цифровой РЭА — математическую логику, теорию конечных автоматов, теорию массового обслуживания. Математические модели на метауровне — системы обыкновенных дифференциальных уравнений, системы логических уравнений, имитационные модели систем массового обслуживания.

13.2.1. Математические модели на микроуровне

Модели на микроуровне используются для исследования напряженного состояния деталей конструкции и для расчетов их на прочность. Напряженное состояние деталей конструкции в зависимости от геометрии исследуемого узла, вида приложенной нагрузки и свойств материала описывается дифференциальными уравнениями различного вида. Любое из этих уравнений может быть получено из общего квазигармонического уравнения

(13.4)

где х, у, z — пространственные координаты; — искомая непрерывная функция; Кх, Ку, Kz — коэффициенты; Q — внешнее воздействие.

В двумерном случае при Кх = Kv = 1 уравнение (13.4) сводится к уравнению, которое описывает напряженное состояние, возникающее в поперечном сечении упругого однородного стержня под воздействием крутящего момента М:

(13.5)

где Е — модуль сдвига материала стержня; θ — угол закручивания на единицу длины, — функция, связанная с напряжениями сдвига τх и τу уравнениями

(13.6)

В уравнение (13.6) в явном виде не входит крутящий момент, связанный с искомой функцией напряжения уравнением

(13.7)

где S — площадь рассматриваемого сечения.

Точное решение краевых задач получают только в частных случаях. Поэтому реализация таких моделей заключается в использовании различных приближенных моделей. Широкое распространение получили модели на основе интегральных уравнений и модели на основе метода сеток. Одним из наиболее популярных методов решения краевых задач в САПР является метод конечных элементов.

13.2.2. Математические модели на макроуровне

Большинство технических подсистем характеризуется фазовыми переменными. Фазовые переменные образуют вектор неизвестных в ММ технической системы. Для каждой физической подсистемы характерны свои законы, однако для простейших элементов форма выражающих их уравнений оказывается одинаковой. Ниже приводятся в качестве примера электрическая и механическая подсистемы.

Электрическая подсистема

Фазовыми переменными электрической подсистемы являются токи I и напряжения U. Запишем уравнения трех типов простейших элементов.

  1.  Уравнение сопротивления (закон Ома) I = U/R, где R — электрическое сопротивление.
  2.  Уравнение емкости I = C(dU/dt), где С — электрическая емкость.
  3.  Уравнение индуктивности U = L(dI/dt), где L — электрическая индуктивность.

Механическая поступательная система

Фазовые переменные механической поступательной подсистемы — силы F и скорости V — соответственно аналоги токов и напряжений. Запишем уравнения трех типов простейших элементов:

  1.  Уравнение вязкого трения F = V/RM, где RM = 1/k — аналог электрического сопротивления; к — коэффициент вязкого трения.
  2.  Уравнение массы (уравнение второго закона Ньютона) F = mа = См (dV/dt), где а = dV/dt — ускорение; См = m — аналог электрической емкости (масса элемента).
  3.  Уравнение пружины F = kх, где х — перемещение; k — жесткость пружины.

Продифференцируем обе части уравнения по времени: dF/dt = kV, или V = LM(dF/dt), где LM = 1/k — аналог электрической индуктивности.

Аналогичное компонентное уравнение можно получить из закона Гука для элемента, у которого учитывается сжимаемость, т.е. Р = Е(Δl/l), где Р — напряжение в элементе; Е — модуль Юнга; l — длина элемента; А1 — изменение длины элемента. Умножив обе части этого уравнения на площадь S поперечного сечения элемента и продифференцировав по времени, получим d(PS)/dt = (ESA)(dΔl/dt); d(Δl)/dt = V; PS = F; dF/dt = (ES/I)V, или V=LM=(dF/dt); LM = 1/(ES).

Механическая вращательная подсистема

Фазовые переменные этой подсистемы — моменты сил М и угловые скорости ω — соответственно, аналоги токов и напряжений. Запишем уравнения трех типов простейших элементов.

  1.  Уравнение вязкого трения вращения М = ω/Rвр, где Rвр – 1/k — аналог электрического сопротивления; k — коэффициент трения вращения.
  2.  Основное уравнение динамики вращательного движения М = J(dω/dt), где J — аналог электрической емкости (момент инерции элемента).
  3.  Уравнение кручения бруса с круглым поперечным сечением М = GJpθ, где М — крутящий момент; G — модуль сдвига; Jp — полярный момент инерции сечения; θ = d/dl — относительный угол закручивания.

Рассмотрим брус конечной длины, тогда θ = /l, где — угол закручивания; l — длина бруса. Продифференцируем обе части уравнения по времени, т. е. dM/dt – (GJр/l)(d/dt), или если учесть, что (d/dt) = ω и Lвр = l/(GJp), то ω = Lвр (dM/dt), где Lвр — аналог электрической индуктивности (вращательная гибкость).

Аналогичное компонентное уравнение можно получить для спиральной пружины, М = с, где с — жесткость пружины. Продифференцировав обе части уравнения по времени, получим ω = Lвp(dM/dt); Lвp = l/c.

13.2.3. Математические модели на метауровне

Математические модели в технологических системах довольно разнообразны.

Математические модели с использованием целочисленного программирования

Для создания технологических структур из РТК необходимо приобрести n PTK для участка. Для этого выделен фонд в сумме N рублей. Стоимость РТК j-ro типа — Cj, а производительность — aj, j = 1,n. Требуется выбрать РТК, обеспечивающие максимальную суммарную производительность в пределах установленного денежного лимита N. Математическая модель:

(13.8)

где x = (x1, x2, ..., xj, …, xn); aj 0; Cj 0; N > 0 — целые числа.

Решение ведется методом ветвей и границ.

Если отбросим требования целочисленности, переменные aj, Cj изменяются непрерывно на отрезке [0, 1]. Решение такой непрерывной задачи будет верхней границей (так как определяется максимум) множества значений целевой функции на соответствующем подмножестве решения. Алгоритм решения непрерывной задачи состоит в следующем. Упорядочим коэффициенты a1, a2, ..., aj ... ап порядке убывания величин λj = aj /Cj и соответственно этому порядку нумеруем переменные и параметры задачи.

Процедура разбиения (методом ветвей и границ) допустимого множества G, задаваемого ограничениями, такова: разбивают G на два подмножества G1 и G2, первому подмножеству принадлежат все решения с х1=1, а второму — с x1 = 0. Далее каждое из подмножеств G1 и G2 опять разбивают на два: в первом x1 = 1, во втором х1 = 0 и т. д.

На каждом шаге очередного разбиения выбирают подмножество, которому соответствует максимальное значение оценки. Поиск решения заканчивают, если на некотором шаге получают допустимое решение значения целевой функции, на котором шаг будет наибольшим по сравнению с оценками для всех подмножеств — кандидатов на разбиение.

Математические модели с использованием систем массового обслуживания

Эти системы основаны на марковском случайном процессе. Физическая система S с течением времени меняет свое состояние (переходит из одного состояния в другое) случайным образом [38]. Тогда в системе S протекает случайный процесс, который называется марковским, если для любого момента времени t0 вероятностные характеристики процесса в "будущем" зависят только от его состояния в данный момент времени t0 и не зависят от того, когда и как система пришла в это состояние. Вероятностные характеристики в "будущем" можно найти: например, вероятность того, что через некоторое время τ система S окажется в состоянии S1 или сохранит состояние S0 и т. .

Таким образом, в марковском случайном процессе "будущее" зависит от "прошлого" только через "настоящее".

Рассматривая марковские процессы с дискретными состояниями и непрерывным временем, удобно будет представлять, что все переходы системы S из состояния в состояние происходят под действием каких-то потоков событий (поток вызовов, отказов, восстановлений и т. п.). Если все потоки событий, переводящие систему S из состояния в состояние, — простейшие, то процесс, протекающий в системе, будет марковским. Это и естественно, так как простейший поток не обладает последействием: в нем "будущее" не зависит от "прошлого".

Если система S находится в каком-то состоянии Si, из которого есть непосредственный переход в другое состояние Sj (стрелка, ведущая из Si в Sj на графе состояний), то это можно представлять так, как будто на систему, пока она находится в состоянии Sj, действует простейший поток событий, приводящий ее по стрелке Si – Sj. Как только появится первое событие этого потока, происходит "перескок" системы из Si в Sj.

Для наглядности очень удобно представлять граф состояний. Построим размеченный граф состояний для технического устройства из двух узлов. Состояния системы будут:

  •  S0 — оба узла исправны;
  •  S1 — первый узел ремонтируется, второй исправен;
  •  S2 — второй узел ремонтируется, первый исправен;
  •  S3 — оба узла ремонтируются.

Интенсивность потоков событий, переводящих систему из состояния в состояние, вычисляется при условии, что среднее время ремонта узла не зависит от того, ремонтируется ли один узел или оба сразу. Это будет именно так, если ремонтом каждого узла занят отдельный специалист. Найдем все интенсивности потоков событий, переводящих систему из состояния в состояние. Пусть система находится в состоянии So. Какой поток событий переводит ее в состояние S1? Очевидно, поток отказов первого узла. Его интенсивность λ1 равна единице, деленной на среднее время безотказной работы первого узла. Какой поток событий переводит систему обратно из Si в Sj? Очевидно, поток "окончаний ремонтов" первого узла. Его интенсивность μ1 равна единице, деленной на среднее время ремонта первого узла. Аналогично вычисляются интенсивности потоков событий, переводящих систему по всем стрелкам графа рис. 13.2.

Имея в своем распоряжении размеченный граф состояний системы, легко построить математическую модель данного процесса.

В самом деле, пусть рассматривается система S, имеющая n возможных состояний S1, S2, …, Sn. Назовем вероятностью i-го состояния вероятность pi(t) того, что в момент t система будет находиться в состоянии Sj. Очевидно, что для любого момента сумма всех вероятностей состояний равна единице:

(13.9)


Рис. 13.2.  Размеченный граф

Имея в своем распоряжении размеченный граф состояний, можно найти все вероятности состояний pi(t) как функции времени. Для этого составляют и решают так называемые уравнения Колмогорова — особый вид дифференциальных уравнений, в которых неизвестными функциями являются вероятности состояний.

Математические модели с использованием сетей Петри

Сети Петри являются эффективным инструментом дискретных процессов, в частности, функционирования станочных систем. Их особенность заключается в возможности отображения параллелизма, асинхронности и иерархичности.

На рис. 13.3 приводится сети Петри, где Р — конечное непустое множество позиций (состояний); Т — конечное непустое множество переходов (событий), причем p P и ti T; F: Р x Т — {0, 1, 2, ...}; Н: Т x Р {0, 1, 2, ...} — функции входных и выходных инциденций; μ0 : Р {0, 1, 2, ...} — начальная маркировка. Вершины сети p P изображены кружками, а вершины ti T — черточками (баркерами). Дуги соответствуют функциям инцидентности позиций и переходов. Точки в кружочках означают заданную начальную маркировку. Число маркеров в позиции равно значению функции μ: Р {0, 1, 2, ...}. Переход от одной маркировки к другой осуществляется срабатыванием переходов. Переход t может сработать при маркировке μ, если он является возбужденным:

(13.10)


Рис. 13.3.  Сеть Петри

Данное условие показывает, что в каждой входной позиции перехода t число маркеров не меньше веса дуги, соединяющей эту позицию с переходом. В результате срабатывания перехода t, удовлетворяющего условию (13.10), маркировку μ заменяют маркировкой μ' по следующему правилу:

(13.11)

По этому правилу в результате срабатывания из всех входных позиций перехода t изымается F(p,t) маркеров и в каждую выходную позицию добавляется H(t,p) маркеров. Это означает, что маркировка μ' непосредственно достижима из маркировки μ. Функционирование сети Петри — последовательная смена маркировок в результате срабатывания возбужденных переходов.

Состояние сети в данный момент времени определяется ее текущей маркировкой. Важная характеристика сети Петри — граф достижимости, с помощью которого описываются возможные варианты функционирования сети. Такой граф имеет вершины, которые являются возможными маркировками. Маркировки μ и μ' соединяются в направлении t дугой, помеченной символами перехода t T или μt μ'. Маркировка μ' такая последовательность переходов: τ = t1, t2, ..., tk является достижимой из маркировки μ, если существует, что μt1μ't2 ... μ tk μ.

В качестве примера рассматривается сеть Петри, изображенная на рис. 4.3.

N = (Р, Т, F, Н, μ0), где Р = {Р1, Р2, Р3, Р4, Р5},

T = {t1, t2, t3, t4, t5}, μ0 = (1, 1, 0, 0, 0). Функции F и Н заданы матрицами

P1

P2

P3

P4

P5

H =

t1

0

0

1

2

0

t2

1

0

0

0

1

t3

1

1

0

0

0

t4

0

0

0

1

0

t1

t2

t3

t4

F =

P1

1

0

0

0

P2

1

0

0

0

P3

0

1

0

0

P4

0

0

1

0

P5

0

0

0

1

Фрагмент графа достижимости для сети Петри приведен на рис. 13.4.


Рис. 13.4.  Фрагмент графа достижимости сети Петри

13.3. Структурные модели

Структурные или структурно-логические модели, согласно ГОСТ 14.416-83, подразделяются на табличные, сетевые и перестановочные. Сетевые определяются строками булевой матрицы (таблица 13.2).

Здесь Si — свойства моделей, влияющих на содержание проектирования; F(S) — набор свойств, если все графы объектов Ак, проектируемых по данной модели, простые пути или цепи, Fg = 1 и Fg = 0 в противном случае; Fn — набор свойств, учитывающих число элементов во всех вариантах объектов Ak ( Fn = 1 — число элементов во всех ai одинаково, Fn = 0 — в противном случае); Fλ — набор свойств, учитывающих отношения между любыми элементами объекта aiaj Аk во всех вариантах объектов Аk (Fλ = 1 — отношение не меняется, Fλ = 0 — в противном случае); Fа — набор свойств, учитывающих состав элементов ai в Аk (Fа = 1 — состав одинаков, Fа = 0 — в противном случае).

Таблица 13.2.

Fg

Fa

Fλ

Fn

[Si x F(S)] =

1

1

1

1

S1

1

1

1

0

S2

1

1

0

1

S3

1

1

0

0

S4

1

0

1

0

S5

1

0

0

0

S6

0

1

1

1

S7

0

1

1

0

S8

0

1

0

1

S9

0

1

0

0

S10

0

0

1

0

S11

0

0

0

0

S12

В матрице (13.2) модели класса Si называют табличными. В табличной модели каждому набору свойств F(Аk) соответствует единственный вариант проектируемого объекта Аk, поэтому табличные модели используют для поиска стандартных, типовых и готовых решений. Модели остальных классов применяют для получения типовых унифицированных и индивидуальных проектных решений при наличии их вариантов и необходимости оптимизации решения. Модели классов S2 , S5 , S7 , S8 и S11 называют сетевыми. Структура элементов сетевой модели описывается ориентированным графом, не имеющим ориентированных циклов. В этой модели может содержаться несколько вариантов проектируемого объекта Аk, однако во всех вариантах сохраняется неизменным соотношение порядка между входящими элементами. Модели классов S3 , S4 , S6 , S9 , S10 и S12 называют перестановочными. Соотношение порядка между элементами проектируемого объекта Аk в перестановочных объектах обычно задается с помощью графа, содержащего ориентировочные циклы, причем все варианты объектов Аk, проектируемые по перестановочным моделям, различаются порядком между элементами, входящими в них.

Объектом проектирования Аk может быть технологический процесс, операция или технологический переход. Если рассматривать технологический процесс в качестве объекта проектирования, то операции будут элементами. При проектировании операции элементами будут технологические переходы.

Если Аk должен содержать фиксированный набор элементов ai Аk , то

Если Аk может содержать любой элемент ai Аk, то

А если какой-либо единственный элемент ai Аk, то

При обработке группы деталей на токарном прутковом автомате с помощью табличной модели устанавливается последовательность обработки поверхностей. Каждая деталь имеет поверхности F1, F2, ...., F8 с определенными свойствами, поэтому состав свойств поверхностей, относящихся к группе деталей, будет

Если ввести совокупность свойств более высокого уровня:

а если совокупность свойств деталей 1-й, 2-й, 3-й групп (соответственно, элементам а1, а2, а3 группы А деталей, т. е. а1, а2, а3 А), то получим

Контрольные вопросы и упражнения

  1.  В чем сущность блочно-иерархического подхода к проектированию?
  2.  Как составляется полная модель?
  3.  Что характерно для макромодели?
  4.  Что представляют собой сети Петри?
  5.  Какие модели называют табличными?
  6.  Для чего используют табличные модели?
  7.  Что называется сетевой моделью?
  8.  Как описывается структура сетевых моделей?
  9.  Что называется перестановочной моделью?


 

А также другие работы, которые могут Вас заинтересовать

67233. Организация деятельности маркетинговых служб 177 KB
  Организация деятельности маркетинговых служб Процесс управления маркетингом состоит из: анализа рыночных возможностей; отбора целевых рынков; разработки комплекса маркетинга; претворения в жизнь маркетинговых мероприятий. Сегмент рынка состоит из потребителей одинаково реагирующих...
67234. Безопасность в чрезвычайных ситуациях 22.11 KB
  Классификация чрезвычайных ситуаций Существуют различные классификации чрезвычайных ситуаций. В первый из названных типов входят социально-политические конфликты а в последний три класса чрезвычайных ситуаций стихийные бедствия техногенные технологические катастрофы...
67235. Историческая типологизация культуры 31.5 KB
  Историческая типологизация культуры Предполагает выделение в истории человечества определенных историко-культурных эпох с целью анализа изменения культуры. Историко-культурная эпоха это длительный период доминирования сходных культурных форм выделяемый на основе таких признаков...
67237. Активный и пассивный словарный запас 110.5 KB
  Лексика языка почти непрерывно пополняется новыми словами возникновение которых связано с изменениями в жизни общества развитием производства науки и культуры. Так как закрепление в языке новых слов и значений и особенно уход из языка устаревшего – процесс постепенный и...
67238. СУТНІСТЬ ТА ФУНКЦІОНУВАННЯ ПОЛІТИЧНИХ ПАРТІЙ 121.5 KB
  Поняття політичної партії її виникнення етапи розвитку. Типологія політичних партій і партійних систем Партії і партійна система в Україні. Поняття політичної партії її виникнення етапи розвитку Політичне життя в сучасному суспільстві не мислиме без партій.
67239. Плаваючі елементи та очищення 346 KB
  У цій темі ми познайомимося з плаваючими елементами (float) і очищенням (clearing) – двома обов’язковими інструментами сучасного Web-дизайнера. Вони є багатогранними інструментами, які можна використовувати для реалізації обтікання текстом зображень і навіть створення багатостовпцевих компонувань.
67240. ФУНКЦИОНАЛЬНАЯ СПЕЦИАЛИЗАЦИЯ КОРЫ БОЛЬШИХ ПОЛУШАРИЙ МОЗГА 106.5 KB
  Разные области коры подразделяются в зависимости от выполняемой функции на проекционные соматосенсорная зрительная слуховая моторные и ассоциативные префронтальная теменно-височно-затылочная лимбическая Рис. В каждом пункте переключения происходит переработка передаваемого сигнала каждый такой информационный...
67241. ХИМИКО-ТЕРМИЧЕСКАЯ ОБРАБОТКА СТАЛЕЙ 78 KB
  Цементация сталей Насыщение поверхности стали углеродом называется цементацией. В результате цементации в поверхностном слое стали образуются железо-углеродистые фазы соответствующие диаграмме состояния Fe Fез С. Атомарный углерод адсорбируется поверхностью стали и диффундирует в глубь металла.