30382

Разработка математических моделей при проектировании технологии

Лекция

Информатика, кибернетика и программирование

Методы получения моделей элементов Получение моделей элементов моделирование элементов в общем случае процедура неформализованная. В то же время такие операции как расчет численных значений параметров модели определение областей адекватности и др. Поэтому моделирование элементов обычно выполняется специалистами конкретных технических областей с помощью традиционных средств экспериментальных исследований и средств САПР. Далее происходит определение соответствующего этим закономерностям математического описания обоснование и принятие...

Русский

2013-08-24

164 KB

14 чел.

15. Лекция: Разработка математических моделей при проектировании технологии

Рассматривается методология построения математических моделей при проектировании технологии производства РЭС. Цель лекции: изложить методологию, знание которой является обязательным при проектировании технологии изготовления любой промышленной продукции, в частности, РЭС

15.1. Методы получения моделей элементов

Получение моделей элементов (моделирование элементов) в общем случае — процедура неформализованная. Основные решения, касающиеся выбора вида математических соотношений, характера используемых переменных и параметров, принимает проектировщик. В то же время такие операции, как расчет численных значений параметров модели, определение областей адекватности и др., алгоритмизированы и решаются на ЭВМ. Поэтому моделирование элементов обычно выполняется специалистами конкретных технических областей с помощью традиционных средств экспериментальных исследований и средств САПР.

Методы получения функциональных моделей элементов делят на теоретические и экспериментальные. Теоретические методы основаны на изучении физических закономерностей, протекающих в объекте процессов. Далее происходит определение соответствующего этим закономерностям математического описания, обоснование и принятие упрощающих предположений, выполнение необходимых выкладок и приведение результата к принятой форме представления модели. Экспериментальные методы основаны на использовании внешних проявлений свойств объекта, фиксируемых во время эксплуатации однотипных объектов или при проведении целенаправленных экспериментов.

Несмотря на эвристический характер многих операций моделирования, имеется ряд положений и приемов, общих для получения моделей различных объектов. Достаточно общий характер имеют методика макромоделирования, математические методы планирования экспериментов, а также алгоритмы формализуемых операций расчета численных значений параметров и определения областей адекватности.

15.1.1. Методика макромоделирования

Применение методики состоит из следующих этапов [51]:

  1.  Определение тех свойств объекта, которые должны отражаться моделью (устанавливаются требования к степени универсальности будущей модели). 
  2.  Сбор априорной информации о свойствах моделируемого объекта. Примерами собираемых сведений могут служить справочные данные, математические модели и результаты эксплуатации существующих аналогичных объектов и т. п. Назовем эту информацию производственной статистикой.
  3.  Получение общего вида уравнений модели (структуры модели). Этот этап в случае теоретических методов включает выполнение всех присущих этим методам операций, перечисленных выше. Часто проектировщику модели удобнее оперировать не уравнениями, а эквивалентными схемами, с помощью которых инженеру проще устанавливать физический смысл различных элементов математической модели.
  4.  Определение численных значений параметров модели. Возможны следующие приемы выполнения этого этапа:
    •  использование специфических расчетных соотношений с учетом собранных на этапе 2 сведений;
    •  решение экстремальной задачи, в которой в качестве целевой функции выбирается степень совпадения известных значений выходных параметров объекта с результатами использования модели, а управляемыми параметрами являются параметры модели;
    •  проведение экспериментов и обработка полученных результатов.
  5.  Оценка точности полученной модели и определение области ее адекватности. При неудовлетворительной точности оценок выполняют итерационное приближение к желаемому результату повторением этапов 3-5.
  6.  Представление полученной модели в форме, принятой в используемой библиотеке моделей.

15.1.2. Методы планирования экспериментов

Для целей моделирования используют пассивные и активные эксперименты. В пассивных экспериментах нет возможности выбирать условия опыта по своему усмотрению и устанавливать значения факторов на желаемом уровне. В активных экспериментах опыты проводятся по заранее разработанному плану, выражающему количество опытов и значения факторов в каждом опыте [28, 31].

Выбор вида зависимости выходного параметра макромодели у (в общем случае рассматривается вектор выходных параметров Y) от внешних параметров qk, объединенных в вектор факторов Q, осуществляется проектировщиком. Чаще всего в методах планирования эксперимента используются модели линейные

(15.1)

или квадратичные

(15.2)

где А — вектор — строка коэффициентов (параметров) модели; В — вектор, включающий факторы qk, те или иные произведения из двух, трех или более факторов и, возможно, также квадраты факторов qk; k = 1, ..., р; р — число факторов.

Число опытов N, как правило, должно превышать число определяемых параметров вектора А. Параметры рассчитывают по методу наименьших квадратов, т. е. из условия минимизации суммы квадратов отклонений значений , определенных по уравнению модели (15.1), и измеренных значений :

(15.3)

где — номер опыта.

В зависимости от способов планирования преимущества активных экспериментов перед пассивными могут выражаться в получении оптимального положения области адекватности, в ее увеличенном объеме, в упрощении оценок точности и т. п.

15.1.3. Регрессионный анализ

Связь между у и Q может быть не функциональной, а статистической, что особенно характерно при пассивных экспериментах. Для получения моделей в такой ситуации часто применяют регрессионный анализ. Модель создается в форме уравнения регрессии (15.1), в котором роль коэффициентов ak в векторе А выполняют коэффициенты относительной регрессии.

Рассмотрим алгоритм вычисления коэффициентов ak. По результатам пассивных экспериментов получаются оценки математических ожиданий Му, Мк1 среднеквадратичных отклонений σу, σk, соответственно, для выходного у и внешних qk параметров, а также коэффициенты корреляции rk между у и qk , образующие вектор R, и коэффициенты корреляции dkj между факторами qk и qj, образующие матрицу D. Далее решается система линейных алгебраических уравнений

(15.4)

и полученный вектор η = (η1, η2, ..., ηр) используется при расчете относительных коэффициентов регрессии по формуле

(15.5)

Если факторы qk некоррелированы, то D — единичная матрица и можно обойтись без решения системы (15.4), так как ηк = rk.

15.1.4. Диалоговое моделирование

Поскольку в методике макромоделирования присутствуют эвристические и формальные операции, целесообразно разрабатывать модели элементов в диалоговом режиме работы с ЭВМ. Используемый язык взаимодействия человека с ЭВМ должен иметь возможность оперативного ввода исходной информации о структуре модели, об известных характеристиках и параметрах объекта, о плане экспериментов. Диалоговое моделирование должно иметь программное обеспечение, в котором реализованы алгоритмы статистической обработки результатов экспериментов. В данное программное обеспечение должен входить расчет выходных параметров эталонных моделей и создаваемых макромоделей, в том числе расчет параметров по методам планирования экспериментов и регрессионного анализа. В методику должны быть включены алгоритмы методов поиска экстремума, расчета областей адекватности и др. Пользователь, разрабатывающий модель, может менять уравнения модели, задавать их в аналитической, схемной или табличной форме, обращаться к нужным подпрограммам и тем самым оценивать результаты предпринимаемых действий, приближаясь к получению модели с требуемыми свойствами.

15.2. Математические модели объектов проектирования на микроуровне

Математические модели деталей и процессов на микроуровне отражают физические процессы, протекающие в сплошных средах и непрерывном времени. Независимыми переменными в этих моделях являются пространственные координаты и время. В качестве зависимых переменных выступают фазовые переменные, такие как потенциалы, напряженности полей, концентрации частиц, деформации и т. п. Взаимосвязи переменных выражаются с помощью уравнений математической физики — интегральных, интегро-дифференциальных или дифференциальных уравнений в частных производных. Эти уравнения составляют основу ММ на микроуровне.

Для получения законченной математической модели, используемой в задачах проектирования, необходимо дополнительно выполнить ряд процедур:

  •  выбрать краевые условия. Краевые условия представляют собой сведения о значениях фазовых переменных и (или) их производных на границах рассматриваемых пространственных и временных областей;
  •  дискретизировать задачу. Дискретизация подразумевает разделение рассматриваемых пространственных и временных областей на конечное число элементарных участков с представлением фазовых переменных конечным числом значений в избранных узловых точках, принадлежащих элементарным участкам;
  •  алгебраизировать задачу — аппроксимировать дифференциальные и интегральные уравнения алгебраическими.

Используют два основных подхода к дискретизации и алгебраизации краевых задач, составляющие сущность методов конечных разностей (МКР) и конечных элементов (МКЭ). С помощью любого из этих методов формируется окончательная модель, исследуемая при выполнении различных процедур анализа проектируемого объекта.

Пользователь САПР средствами входного языка задает исходную информацию о конфигурации проектируемого объекта, о способе дискретизации — разделения среды на элементы, — о физических свойствах участков среды. Формирование модели объекта, т. е. разделение среды на элементы, выбор математических моделей элементов из заранее составленных библиотек, объединение моделей элементов в общую систему уравнений, так же как и решение получающихся уравнений, осуществляется автоматически на ЭВМ.

Основные уравнения математической физики, используемые в моделях проектируемых объектов. Процессы, протекающие в техническом объекте при его функционировании, по своей физической природе могут быть разделены на:

  •  электрические;
  •  тепловые;
  •  магнитные;
  •  оптические;
  •  механические;
  •  гидравлические и т. п.

Каждому типу процессов в математической модели соответствует своя подсистема, основанная на определенных уравнениях математической физики. Рассмотрим примеры уравнений, составляющих основу математических моделей технических объектов на микроуровне.

Электрические процессы в современных полупроводниковых приборах с достаточной точностью удается описать с помощью уравнений непрерывности и Пуассона. Уравнения непрерывности выражают скорости изменения концентраций свободных носителей заряда и записываются отдельно для дырок и электронов:

(15.6)

(15.7)

где p и n — концентрации дырок и электронов, соответственно; q — заряд электрона; gP и gn — скорости процесса генерации-рекомбинации, соответственно, дырок и электронов;

(15.8)

(15.9)

где q — плотности дырочного и электронного токов; μp, μn — подвижности; Dp, Dn — коэффициенты диффузии дырок и электронов; — электрический потенциал.

Уравнения (15.8)-(15.9) показывают, что причинами изменения концентрации носителей могут быть неодинаковость числа носителей, втекающих (и вытекающих) в элементарный объем полупроводника (тогда div J0), и нарушение равновесия между процессами генерации и рекомбинации носителей. Уравнения (15.8) и (15.9), называемые уравнениями плотности тока, характеризуют причины протекания электрического тока в полупроводнике: электрический дрейф под воздействием электрического поля (grad 0) и диффузию носителей при наличии градиента концентрации. Уравнение Пуассона характеризует зависимость изменений в пространстве напряженности электрического поля Е = –grad от распределения плотности электрических зарядов ρ:

(15.10)

где ε — относительная диэлектрическая проницаемость среды; ε0 — диэлектрическая постоянная.

В качестве краевых условий в моделях полупроводниковых приборов используют зависимости потенциалов на контактах от времени, принимают значения концентраций носителей на границе между внешним выводом и полупроводником равными равновесным концентрациям ро и n0, для границ раздела полупроводника и окисла задаются скоростью поверхностной рекомбинации gS, что определяет величины нормальных к поверхности раздела составляющих плотностей тока Jp и Jn и т. д.

Результат решения уравнений непрерывности и Пуассона при известных краевых условиях — это поля потенциала и концентраций подвижных носителей в различных областях полупроводниковой структуры. Знание этих полей позволяет оценить электрические параметры прибора.

В основе моделей диффузионных процессов, используемых, в частности, для описания технологических операций диффузии примесей при изготовлений интегральных схем и полупроводниковых приборов, лежит уравнение диффузии

(15.11)

где N — концентрация примеси; D — коэффициент диффузии.

Краевые условия представлены зависимостью распределения примеси N в объеме полупроводника в начальный момент времени и зависимостью поверхностной концентрации от времени.

На использовании закономерностей протекания тепловых процессов основано действие многих теплофизических установок. В РЭС полезные свойства обусловлены закономерностями электрических процессов, однако рассеяние мощности и изменения температуры оказывают заметное влияние на характер функционирования аппаратуры. Поэтому в моделях РЭС, как и в моделях многих устройств иной природы, приходится учитывать тепловые процессы. Теплоперенос в твердых телах описывается уравнением теплопроводности

(15.12)

где T — температура; С — удельная теплоемкость; р — плотность; λ — коэффициент теплопроводности; gQ — количество теплоты, выделяемой в единицу времени в единице объема.

15.3. Математические модели объектов проектирования на макроуровне

Компонентные и топологические уравнения

Для одного и того же объекта (детали) на микро- и макроуровнях используют разные математические модели. На микроуровне ММ должна отражать внутренние по отношению к объекту процессы, протекающие в сплошных средах. На макроуровне ММ того же объекта служит для отражения только тех его свойств, которые характеризуют взаимодействие этого объекта с другими элементами в составе исследуемой системы [51].

Математические модели элементов на макроуровне получают одним из способов, рассмотренных ранее.

Математические модели систем (ММС) формируют из математических моделей элементов (ММЭ), излагаемых ниже.

Уравнения, входящие в ММЭ, называют компонентными. Наряду с компонентными уравнениями в ММС входят уравнения, отражающие способ связи элементов между собой в составе системы и называемые топологическими. Топологические уравнения могут выражать законы сохранения, условия неразрывности, равновесия и т. д.

В используемых в САПР методах формирования ММС принято моделируемую систему представлять в виде совокупности физически однородных подсистем. Каждая подсистема описывает процессы определенной физической природы, например механические, электрические, тепловые, гидравлические. Как правило, для описания состояния одной подсистемы достаточно применять фазовые переменные двух типов — потенциала и потока.

Особенностью топологических уравнений является то, что каждое из них связывает однотипные фазовые переменные, относящиеся к разным элементам системы. Примером могут служить уравнения законов Кирхгофа, записываемые относительно либо токов, либо напряжений ветвей. Для компонентных уравнений характерно то, что они связывают разнотипные фазовые переменные, относящиеся к одному элементу. Например, уравнение закона Ома связывает ток и напряжение резистора.

Формы представления моделей

Элементы подсистем бывают простыми и сложными. Элемент называют простым, если соответствующая ему ММЭ может быть представлена в виде одного линейного уравнения, связывающего переменную типа потенциала U и переменную типа потока I, характеризующие состояние данного элемента.

В физически однородных подсистемах различают три типа простых элементов. Это элементы емкостного, индуктивного и резистивного типов. Соответствующие им ММЭ имеют вид

(15.13)

где С, L, U, I — параметры элементов.

Элементы подсистем в зависимости от числа однотипных фазовых переменных, входящих в ММЭ, делят на двухполюсники и многополюсники. Двухполюсник характеризуется парой переменных типа U и I, определяется так же, как простой элемент, если снять условие линейности уравнения. Многополюсник можно представить как совокупность взаимосвязанных двухполюсников.

Для представления математических моделей на макроуровне применяют несколько форм.

Инвариантная форма — представление модели в виде системы уравнений, записанной на общепринятом математическом языке, безотносительно к методу численного решения. Применительно к системам обыкновенных дифференциальных уравнений различают две инвариантные формы: нормальную и общую, определяемые тем, в каком виде — явном или неявном относительно вектора производных — представлена система.

Ряд форм модели получается при преобразовании ее уравнений на основе формул и требований выбранного численного метода решения. Так, численное решение дифференциальных уравнений как в частных производных, так и в обыкновенных требует их предварительного преобразования — дискретизации и алгебраизации. Дискретизация заключается в замене непрерывных независимых переменных (времени и пространственных координат) дискретным множеством их значений.

Алгебраизованная форма — результат представления дифференциальных уравнений в полученных после дискретизации точках в алгебраизованном виде с помощью формул численного интегрирования. Ряд численных методов решения основан на линеаризации исходных уравнений.

Линеаризованная форма модели — представление уравнений в линейном виде. Алгебраизация и линеаризация могут осуществляться по отношению ко всем или только к избранным переменным, уравнениям или их частям, что увеличивает разнообразие возможных форм представления моделей.

Формы представления моделей определяются также используемыми языковыми средствами. Наряду с традиционным математическим языком применяют алгоритмические языки, а также те или иные графические изображения. Рассмотрим особенности представления моделей в виде эквивалентных схем.

Последние облегчают пользователю восприятие модели и приводят к представлению модели в той или иной схемной форме, например представление моделей в виде эквивалентных схем, графов. К таким формам относится также представление разностных уравнений с помощью шаблонов.

В разных областях техники применяют специфические системы обозначений элементов на эквивалентных схемах. Будем использовать в дальнейшем единую систему обозначений для элементов всех подсистем, обычно применяемую при изображении электрических эквивалентных схем. При этом элементы представляют собой двухполюсники, которые могут быть пяти различных видов, их условные обозначения приведены на рис. 15.1а.

Получение эквивалентных схем — обычная для инженеров-схемотехников операция, выполняемая при анализе функционирования радиоэлектронных устройств. Переход от принципиальной электрической схемы к эквивалентной заключается в замене обозначений электронных приборов обозначениями двухполюсников (рис. 15.1а) и добавлении ветвей, отображающих учитываемые паразитные параметры. Не вызывает затруднений и составление на основе электрогидравлических и электротепловых аналогий эквивалентных схем, отражающих гидравлические, пневматические и тепловые процессы в проектируемых устройствах.

Составление эквивалентных схем для механических систем начинается с выбора системы координат, начало О которой должно быть связано с инерциальной системой отсчета. Далее формируются п эквивалентных схем, где п — число степеней свободы. В общем случае возможны три эквивалентные схемы, соответствующие поступательным движениям вдоль координатных осей, и три эквивалентные схемы, которые соответствуют вращательным движениям вокруг осей, параллельных координатным осям.


Рис. 15.1.  Условные обозначения двухполюсных элементов

Рассмотрим правила составления эквивалентных схем на примере одной из эквивалентных схем для поступательного движения:

  •  для каждого тела А% с учитываемой массой Сь в эквивалентной схеме выделяется узел I, и между узлом i и узлом О включается двухполюсник массы С7;
  •  трение между контактируемыми телами Ар и Aq отражается двухполюсником механического сопротивления, включаемым между узлами р и q;
  •  пружина, соединяющая тела Ар и Aqy, а также другие упругие взаимодействия контактируемых тел Ар и Aq отражаются двухполюсником гибкости (жесткости), включаемым между узлами р и q.

В качестве примера на рис. 15.1в приведена эквивалентная схема, которая моделирует вертикальные скорости и усилия, возникающие в элементах движущегося транспортного устройства — оно условно изображено на рис. 15.1б в виде платформы В и колес А1 и А2. Здесь учитываются массы платформы Св и колес Са, жесткости колес LA и рессор LD, a также веса Рв, Рл1 Рл2 платформы и колес. Внешние воздействия отражены источниками скорости U.

Часто на эквивалентных схемах рядом с обозначением нелинейного элемента указан его тип или записано его компонентное уравнение.

Для отражения взаимосвязей подсистем различной физической природы, из которых состоит моделируемая техническая система, в эквивалентные схемы подсистем вводят специальные преобразовательные элементы. Различают три вида связей подсистем. Трансформаторная и гираторная связи выражают соотношения между фазовыми переменными двух подсистем, этим типам связей соответствуют преобразовательные элементы, представляемые парами источников тока или напряжения. Третий вид связи выражает влияние фазовых переменных одной подсистемы на параметры элементов другой и задается в виде зависимостей С, L или R от фазовых переменных. если для источника объемного расхода в гидравлической подсистеме использовать выражение g — =SV, а для источника силы в механической подсистеме — выражение F = SP, где V — скорость перемещения поршня; S — площадь поршня; Р — давление жидкости в цилиндре.

Примеры математических моделей элементов электронных схем. Для конденсаторов, катушек индуктивности и резисторов чаще всего применяют простые модели (15.13). Примерами сложных элементов являются транзисторы, диоды, трансформаторы.

Контрольные вопросы и задания

  1.  Что представляет собой процедура разработки моделей элементов?
  2.  На чем основаны теоретические методы получения моделей элементов?
  3.  В чем суть экспериментальных методов?
  4.  Поясните идею методики макромоделирования в технологии.
  5.  Поясните преимущества активного эксперимента.
  6.  Что представляет собой диалоговое моделирование?
  7.  Приведите примеры полной модели и макромодели из какой-либо предметной области.
  8.  В чем заключаются основные отличия методов конечных разностей и конечных элементов?
  9.  Приведите пример математической модели какого-либо объекта на микроуровне.
  10.  Что такое область адекватности модели?
  11.  Для задачи теплопередачи в стержне, описываемой одномерным уравнением теплопроводности, запишите систему разностных уравнений при разделении стержня на п участков.
  12.  Для задачи предыдущего пункта разделите стержень на п конечных элементов. Задайтесь линейной аппроксимацией температуры от х (направление оси х выбрано вдоль стержня). Запишите выражения для координатных функций. Выполните алгебраизацию задачи, задавшись видом функционала, характеризующего качество аппроксимации.
  13.  Приведите примеры компонентных и топологических уравнений для произвольной электронной схемы.
  14.  Запишите компонентные уравнения преобразовательного элемента, отображающего связь электрической и механической подсистем в электромагните.
  15.  Какими уравнениями описывают электрическую модель?
  16.  Что представляет собой двухполюсник?
  17.  Что представляет собой многополюсник?
  18.  Поясните инвариантную форму модели.


 

А также другие работы, которые могут Вас заинтересовать

3556. Історія економічних вчень 144.69 KB
  Предмет і завдання курсу Історія економічних вчень Економічне життя суспільства вивчається системою економічних наук - це науки про загальні закони экономічного розвитку, галузеві економічні науки: науки, шо відмічають конкретні процеси і яв...
3557. Поняття та особливості сільськогосподарського виробництва 36.41 KB
  Сільське господарство розвивається на основі різних форм власності і видів господарювання. Рівень господарювання і характер економічної відокремленості цих господарств визначають специфічні особливості їхніх взаємовідносин з державою і певні відмінності у способах використання механізму дії економічних законів.
3558. Адміністративне право 121.5 KB
  Вступ до адміністративного права. Адміністративне право — це одна з профільних, фундаментальних галузей правової системи України. Адміністративне право визначається як сукупність юридичних норм та правових інститутів, призначених для ре...
3559. Ремонт машин і обладнання підприємств виробництва будівельних матеріалів 304 KB
  Метою курсового проекту по ремонту механічного устаткування є привити студентам навички рішення інженерних питань ремонту, економічних обґрунтувань і планування різних видів ремонту та складання необхідної документації.
3560. Изучение внешнего фотоэффекта 67.5 KB
  Цель работы: изучение внешнего фотоэффекта. Задача: определение световой и вольт-амперной характеристики фотоэлемента. Техника безопасности: напряжение 220 В подается от сети на трансформатор и выпрямитель, поэтому соответствующие токоведущие...
3561. Фінансовий контроль як різновид публічного контролю 80.12 KB
  Фінансовий контроль як різновид публічного контролю 1. Методологічні та теоретичні основи дослідження проблеми фінансового контролю: постановка проблеми. 2. Фінансовий контроль як особливий вид публічного контролю. 3. Поняття та правова природа фінан...
3562. Сучасна українська літературна мова 198.5 KB
  Лекція 1 Українська мова: походження, розвиток і функціонування План Предмет та завдання курсу «Українська мова (за професійним спрямуванням)». Мова і мовлення. Функції мови. Походження та основні етапи розвитку української мови. Літературна мова....
3563. Адвокатура в Україні 244 KB
  Адвокатура в Україні 1. Право громадян на кваліфіковану юридичну допомогу Важливим кроком у створенні таких умов є Закон «Про адвокатуру», ухвалений Верховною Радою України 19 грудня 1992 р. Він проголошує, що адвокатура України здійснює свою діяльн...
3564. Загальне поняття алгоритму. Алгоритмічні мови 84 KB
  Загальне поняття алгоритму. Алгоритмічні мови. У старому трактуванні алгоритм — це точний набір інструкцій, що описують послідовність дій виконавця для досягнення результату рішення задачі за кінцевий час. У міру розвитку паралельності в роботі...