30493

Основные технико-технологические проблемы разведки, освоения и эксплуатации нефтегазовых месторождений

Лекция

География, геология и геодезия

Чтобы управлять технологическими процессами представляющими собой различные этапы (ступени) эксплуатации нефтегазовых месторождений, необходимо сначала изучить закономерности их поведения, а затем на основе имеющихся данных, которые характеризуют различные свойства изучаемого объекта (нефтегазового месторождения)

Русский

2014-11-30

74 KB

6 чел.

Лекция №1

Основные технико-технологические проблемы разведки, освоения и эксплуатации нефтегазовых месторождений.

  1.1. Увеличение удельного веса трудноизвлекаемых запасов, приуроченных к сложно-построенным, малопроницаемым неоднородным коллекторам, представленным малоамплитудными, малопротяженными ловушками углеводородов стратиграфического, тектонического и литологического типа.

1.2. Возрастание требований к разведочным методам по точности, разрешенности (чувствительности), и достоверности определения местоположения и протяженности ловушек углеводородов и оценки содержащихся в них запасов нефти и газа.

1.3. Возрастание требований к  технологии бурения разведочных и  эксплуатационных скважин с точки зрения наведения их (геолокация, геонавигация) ствола на конкретный геологический  объект и удержание в его пределах;

1.4. Возрастание требований к технологии извлечения углеводородов из  малопроницаемых, сложнопостроенных коллекторов, из коллекторов насыщенных высоковязкой нефтью,  из высокообводненных коллекторов на завершающей стадии их эксплуатации и т.д. и т.п.

Моделирование, как средство изучения прогноза поведения и управления  сложными  многопараметровыми  системами и  процессами.

Чтобы управлять технологическими процессами представляющими собой различные этапы (ступени) эксплуатации нефтегазовых месторождений, необходимо сначала изучить закономерности их поведения, а затем на основе имеющихся данных, которые характеризуют различные свойства изучаемого объекта (нефтегазового месторождения) изменяющиеся как во времени так и в  пространстве, принимать соответствующие обстоятельствам (адекватные) технические и технологические решения.

Поскольку в этом случае мы имеем дело со сложными многопараметровыми системами, описать совокупное поведение которых невозможно с помощью простых аналитических выражений, то и принятие управляющих и, что более важно, прогнозных решений невозможно без представления такого сложного объекта, как нефтегазовое месторождение в виде объемной, трехмерной модели включающей в себя основные информационные пространства: геологическое петрофизическое, геофизическое, гидрогеологическое и промысловое.

Существуют следующие виды моделирования:

  1.  Натурное (физическое) моделирование.

Применяется, как правило, для изучения поведения многопараметровых систем в случае невозможности рассчитать их реакцию на внешнее воздействие с помощью математических выкладок. Так, например, в 60-е годы уточнялись параметры гидротехнических сооружений, когда строились их миниатюрные модели (копии) в уменьшенном масштабе.

  1.  Физико-математическое моделирование. 

Известно, что существуют законы подобия между механическими и электрическими процессами,  которые описываются дифференциальными уравнениями. Многие физические процессы описываются не одиночными, а системами дифференциальных уравнений, решение которых находится с помощью расчета матриц состоящих из соответствующих коэффициентов при неизвестных переменных величинах. В этом случае также может быть использована аналогия например между электрическими и гидродинамическими процессами. В частности с помощью этой аналогии можно решить задачу регулирования отбоора из скважин на нефтяных и газовых месторождениях.

При эксплуатации скважин между ними наблюдается сложное взаимодействие, которое определеяется перепадами давления на контуре месторождения и забойным давлением на каждой скважине, а также параметрами проницаемости ПЗП. Поэтому задача регулирования отбора в соответствии с планом добычи нефти является сложной инженерной задачей. Ее решение может быть найдено при помощи аналогии между электрическими и гидродинамическими процессами.

3.  Моделирование решения краевых задач для уравнений в частных производных.

Рассмотренные способы физико-математического моделирования для нахождения решений систем алгебраических и обыкновенных дифференциальных уравнений относятся к исследованию дискретных устройств и процессов.

Однако на практике чаще приходится сталкиваться с изучением свойств физических полей (тепловых, электромагнитных, фильтрационных) которые имеют непрерывный характер.

Изучение поведения физических полей осуществляется на основе уравнений в частных производных математической физики с учетом известных краевых (пограничных) условий.

Можно, например, изучить законы фильтрации воды под платиной и сконструироать на их основе искусственную преграду определенной глубины и протяженности.

 4. Математическое моделирование.

Недостаток расчетов неустановившихся, меняющихся во времени процессов, например, таких, как разработка нефтегазовых месторождений, когда изменение режимов закачки или отбора в одних скважинах существенно влияет на аналогичные режимы в других скважинах, имеющих с первыми гидродинамическую связь (сообщаемость), на электрических (аналоговых) интеграторах заключается в их громоздкости, большой продолжительности во времени, и как следствие, значительным запаздыванием по отношению к меняющимся граничным условиям.

Значительное быстродействие при решении подобных задач может быть    достигнуто с помощью цифровых электронно-вычислительных машин, благодаря замене вычисления непрерывных функций какого-то процесса на вычисление его дискретных значений на малых интервалах времени.

Причем по мере роста быстродействия и оперативной памяти этих вычислительных устройств удается решить наиболее сложные многопараметрические зависимости на основании применения к ним методики вычисления конечных разностей или наименьших квадратов.

Благодаря высокому быстродействию все математические операции в цифровых ЭВМ удалось свести к двум арифметическим действиям: сложению и вычитанию.

ЭВМ нового поколения позволяют работать оператору с машиной в диалоговом режиме, что дает возможность своевременно вмешиваться в процесс решения задачи, либо менять ее условия, если решение по каким-то причинам не удовлетворяет оператора.

  Возможности гравиразведки и магниторазведки для изучения свойств геологической среды непосредственно в массиве

горных пород

Магниторазведка определяет напряженность магнитного  поля  в конкретной точке  на  поверхности  земли в виде полного вектора Т или его составных компонент - вертикальной (Z)  и  горизонтальной(Н) составляющих, либо в виде приращения полного вектора  Т.

Прямая задача магниторазведки определяет конфигурацию и  параметры магнитной  аномалии  от магнитовозмущающих масс известной нормы и размера.

Обратная задача магниторазведки состоит в определении размеров, формы и положения в пространстве  магнитовозмущающих масс.     

Наиболее ценной является геологическая интерпретация магниторазведки, которая должна привязать магнитовозмущающие объекты к объектам геологическим, которыми являются магматогенные и метаморфические комплексы в составе фундамента.

Магниторазведка на этапе региональных нефтепоисковых исследований решает следующие задачи:     

  •  тектоническое районирование территорий,
  •  картирование поверхности фундамента,
  •  выделение зон мощного осадконакопления,
  •  выяснение простирания геологических структур (рис. 9,10).     

(Примеры исследования тектоники РБ и РТ на рис. 11)     

Карты поверхности рельефа фундамента, построенные только по результатам интерпретации магниторазведки, воспроизводят более сглаженную картину.     

В большинстве случаев простирания магнитных аномалий  согласуется с  простиранием геологических структур,  которые учитывают при прокладке профилей сейсмических, электрических гравиметрических. исследований, как правило, поперек простирания магнитных аномалий.    

Гравиразведка изучает  изменение величины ускорения силы тяжести на поверхности земли и влияние на  него геологических тел.    

Обычно измеряют вертикальную производную гравитационного потенциала. В некоторых случаях оценивают величину второй производной. Гравитационного потенциала по координатным осям.

Обычно определяют аномалии  силы  тяжести,  которые  являются разницей между измеренными значениями (qн) и нормальными значениями (q0 ) рассчитанными для данной местности:

                                      q = qнq0                                                                                       (17)

Гравитационные аномалии возникают там, где имеется изменение плотности горной породы в  горизонтальном  направлении,  т.е. когда происходит   отклонение  от  горизонтально-слоистой  модели строения среды.  Интенсивность гравитационных аномалии зависит от перепада плотности  на плотностных границах и степени отклонения их от горизонтального положения.     

В любой точке наблюдения гравитационная аномалия обусловлена влиянием нескольких плотностных границ и гравитирующих  масс,  воздействие которых накладывается друг на друга и суммируется:   

                            qн = qi                                                                  (18)      

qi - рельеф плотностных границ;  

qii - рельеф поверхности фундамента;

qiii - плотностные неоднородности в верхней  мантии и в нижней части земной коры;

qiv - литологические и петрофизические  неоднородности пород фундамента;         

qv - изменение плотности пород в  горизонтальном  направлении;        

qvi - рельеф плотностных границ и латеральная изменчивость плотности пород осадочного покрова.   

Прямая задача  гравиразведки - определение элементов (параметров) гравитационного поля вне возмущающих гравитационных масс.

Обратная задача гравиразведки - определение плотности,  глубины залегания и формы возмущающих гравитационных масс по известным значениям поля аномалий силы тяжести.     

Гравиразведка на этапе региональных нефтепоисковых исследований решает следующие задачи: изучение общих закономерностей геологического строения осадочных бассейнов, выявление перспективных структур.     Практика гравиразведочных работ на нефть и газ  свидетельствует, что  с  их помощью наиболее эффективно выделяются локальные поднятия  в осадочной толще (антиклинали, куполовидные структуры), соляные купола и рифовые массивы (рис.12).     

Гравиразведка может применяться для прямых поисков  нефти  и газа. Это основано на эффекте дефицита плотности нефтегазонасыщенной структуры по отношению к вмещающим водонасыщенным пластам (рис. 13).     Точно также  гравиразведка  может выделять рифовые массивы в толще горной породы,  которые в зависимости от соотношения  плотностей рифа  и  породы могут отмечаться максимумом либо минимумом  q (рис. 14, 15, 16).


 

А также другие работы, которые могут Вас заинтересовать

68454. Основные положения права СМИ в РФ 19.83 KB
  Осуществление этих свобод, налагающее обязанности и ответственность, может быть сопряжено с определенными формальностями, условиями, ограничениями или санкциями, которые предусмотрены законом и необходимы в демократическом обществе в интересах национальной безопасности...
68455. Теория и практика сестринского дела. Общение с пациентом и его окружением в процессе профессиональной деятельности 1.26 MB
  О сестринском деле говорят, что это самая юная наука и самое древнее искусство. Сестринское дело считалось женской профессией, и самой из всех сестринских специальностей, и самой древней являлась акушерская (в Древней Греции, по определению Гиппократа, акушерки могли быть только рожавшие женщины...
68456. Информационные технологии в производстве текстильных изделий 52.5 KB
  В настоящее время любому специалисту, связанному с проектированием и производством текстильных изделий, приходится иметь дело с огромным объемом данных. С появлением компьютеров задача обработки и хранения данных существенно упростилась. Любые данные, хранимые на компьютере, подразделяются на текстовые и числовые.
68457. Организация оперативного ввода изображений в авиационные геоинформационные комплексы реального времени 1.17 MB
  Одной из основных проблем создания ИГК РВ является проблема оперативного ввода больших массивов видеоинформации в реальном масштабе времени, налагаемых на картографический фон. Эта видеоинформация может быть «набросана» от руки и представляет собой изображение...
68458. История политических учений 95 KB
  Отвергая демократию как форму государства Платон настаивает на необходимости использования ее основных принципов в его модели совершенного государства. Подчинения государства закону регулирования общественной жизни людей писанными нормами права и т.
68459. Становление и развитие политической мысли в России 76.5 KB
  История возникновения политической мысли в России совпадает с этапами становления и развития русской государственности. Она развивалась следуя собственным идеалам обычаям и традициям во взаимосвязи с русской философией закономерностями и тенденциями отечественной политической истории.
68460. ФОРМАТИРОВАНИЕ ДАННЫХ В ЯЧЕЙКАХ 1.36 MB
  Ячейка – это минимальный адресуемый элемент рабочего листа. Ячейка определяется адресом. Кроме этого можно задавать диапазон ячеек. Диапазоном называется группа ячеек. Чтобы задать адрес диапазона нужно указать адреса верхней левой и нижней правой ячейки, разделив их двоеточием.
68461. РАБОТА С ФОРМУЛАМИ И ФУНКЦИЯМИ 72 KB
  Формулы в таблице и технология их использования Формула в электронной таблице это выражение по которому вычисляется значение в ячейке. Формула всегда начинается с символа равно =. Формула состоит из операндов и символов операций В качестве операндов используются: Числа.
68462. Разработка рекомендаций по обеспечению защиты информации в отделе записей актов гражданского состояния (ЗАГС) по Центральному району 435 KB
  Информационная безопасность организации - целенаправленная деятельность её органов и должностных лиц с использованием разрешённых сил и средств по достижению состояния защищённости информационной среды организации, обеспечивающее её нормальное функционирование и динамичное развитие.